Геометрические модели, используемые в системах автоматизированного проектирования. Типы геометрических моделей Какие параметры выделяют для описания геометрической фигуры


Если два снимка установлены в такое же положение в котором они находились во время фотографирования, сократив расстояние между точками S1 и S2 до размера базиса проектирования b1 , то получим геометрическую модель местности А’С’D’ подобную участку местности АСD.

Геометрическая модель местности определяется как совокупность точек пересечения соответствующих проектируемых лучей.

Основные понятия:

Базис фотографирования В - расстояние между центрами проекции S1 и S2.

Связка проектируемых лучей - это совокупность проектируемых лучей принадлежащих центру проекции S.

Лучи - это лучи проходящие через центр проекции S и идентичной точки пары снимков.

Базисная плотность - это плотность содержащий базис фотографирования и один (любой) проектируемый луч.

Главная базисная плотность - плотность, содержащая базис фотографирования и один главный луч.

Базис проектирования b - это расстояние между центрами проекций S1 и S2 двух связок, по которой построена модель.

Внутреннее ориентирование снимка - это связки, восстановленные с помощью проектируемых камер.

Взаимное ориентирование снимков - это проектирование камеры с восстановленными связками, которые перемещаются друг относительно друга и устанавливают их так, чтобы лучи пересекались, тогда снимки займут такое же положение, как и во время съемки.

Взаимное ориентирование снимков м.б. достигнуто двумя способами:

Угловыми движениями обеих камер

Движение 1-й камеры (при неподвижной 2-й)

В связи с этим различают 2 системы взаимного ориентирования снимков:

в 1-й неподв. счит. базис фотограф., во 2-й левый снимок. 1-я сист. 2-я сист.В этой сист. базис фотограф. счит. горизонт. независим. от его положен. в пространств. £1 - продольн угол наклона левого снимка те угол в гл. базисной плоск. м/д перпенд. к базису фотограф и гл лучом левой связки. £2 - продольн. угол наклона прав. снимка ǽ1 - угол повор. лев. снимка ǽ2 - угол повор. прав. снимка w2 - взаимн. поперечн. угол наклона

Поперечн. параллакс - это разность ординат соот. т-к прав и лев снимк. q=y1-y2 Трансф. снимк. когда базис фотограф. и снимк. горизонт., оси х лев и прав снимк. лежат на одной прямой и ордин. точек будут равны q0=y01-y02=0

Если измерен. ордин. не равны на снимк., то они взаимн. не ориент.

Продольн. параллакс - это разность абсцисс точек и зависит от формата снимка продольн. перекр и рельефа. р=х1-х2

а1а1=х1; а2а2=-х2; S2A’//‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌S1A; а2а1’=а1а1=х‌1; а2а1’=х‌1-х2=р; АА’=В

1. ∆S2а2а1’~∆S2AA’; ; (1); (2)т.е. для гор. снимка парал. равен базису фотограф. в масш. съемки

2. ∆S1о1а1~S1O1A; ; ; ; ; Н=-Z; с учетом ф(1) Z=-B×f/p. В совр. приб. использ способ мнимой марки, в нем для измерения коорд. т-к исп. 2-е марки Т1 и Т2. Если одновр. расматр. две марки, то они сольют. в 1-у Т, если совмещ. Т1 и Т2 с соотв. т-ми а1 и а2 на сним., то марка восприним. совмещ. с пов-тью модели. Если марка Т2 не совмещ. с одноимен. т-ой а2, то видимая простр. марка Т’’ будет восприним. выше или ниже поверхн. модели.

28. Дешифрирование снимков для составления топографических и кадастровых планов и карт.

Дешифрирование – процесс распознавания по фотоизображению предметов и контуров местности, границ землевладений и землепользований, установление их качественной и количественной характеристик и вычерчивание их условными знаками.

В зависимости от содержания, дешифрирование делят на:

Топографическое;

Специальное.

При топографическом дешифрировании со снимков получают информацию о земной поверхности и расположении на ней объектах.

Основой методической классификации дешифрирования являются средства считывания и анализа видеоинформации. Исходя из этого, выделяют следующие основные методы:

1)Визуальный – информация считывается и анализируется человеком;

2)Машино-визуальный – информация предварительно преобразовывается машинами с целью облегчения последующего визуального анализа;

3)Автоматизированный – считывает со снимков и анализ выполнения машинами при активном участии оператора;

4)Автоматический – дешифрирование полностью выполняется машинами, человек определяет задачи и задает программу обработки.

Методика генерализации информации при дешифрировании базируется в основном на методике картографической генерализации, т.к. основной объем дешифрированных работ выполняется в целях создания топографических и специальных карт.

Нормы генерализации:

1) 4мм 2 для пахотных земель, залежей, улучшенных луговых земель, вкрапленных в них других земель;

2) 10мм 2 для немелиорируемых луговых земель;

3) 50мм 2 для одноименных различных по качественным признакам с/х земель;

4) 100мм 2 для контуров кустарника, бурелома, горелого или сухостойного леса;

5) озера, пруды дешифрируют независимо от их размеров;

6) линейные контура – если их длина превышает 1см, промоины если их длина превышает 0,5см.

Технологическая последовательность работ:

1)Составление технического проекта и сметы. На этом этапе определяются, какие карты масштабом 1:10000 подлежат обновлению. Границы аэрофотоснимка устанавливаются так, чтобы она покрывала полные планшеты. Аэрофотосъемку выполняют в масштабе 1:15000;

2)Подготовительные работы. Включает сбор, систематизацию, анализ и подготовку материалов съемки, юридических, картографических, справочных и др. материалов;

3)Камеральное дешифрирование. На снимки с имеющихся карт переносят все подтверждаемые фотоизображением объекты. Так же дешифрируют четко читаемые по фотоизображению объекты, появившиеся после создания карты. При камеральном дешифрировании не показывают: границы землепользований и землевладений, границы территориальных и административно-территориальных единиц, границы охранных зон, границы разделения земель по видам. Эти объекты будут установлены и отображены при выполнении полевого дешифрирования;

4)Полевое дешифрирование. Уточняются характеристики объектов;

5)Оформление и приемка материалов;

6)Составление технического отчёта.

Дешифрирование населенных пунктов начинается с выделения и вычерчивания магистральных улиц (1мм), прочих улиц, переулков, проездов, тупиков(0,5мм). Постройки разделяются по огнестойкости и размерам. Кварталы с преобладанием огнестойких построек закрашиваются розовым цветом, не огнестойкие – голубым цветом. Постройки размеры стен, которых в натуре не превышают 10м, в зависимости от формы показывают внемасштабным условным знаком, прямоугольником 0,7 × 1мм или квадратом 1 × 1мм.

Введение в трехмерное моделирование

Современные 3D – системы проектирования позволяют создавать трехмерные модели самых сложных деталей и сборок. Используя наглядные методы формирования объемных элементов, конструктор оперирует простыми и естественными понятиями основание, отверстие, фаска, ребро жесткости, оболочка и т. д. При этом процесс конструирования может воспроизводить технологический процесс изготовления детали. После создания 3D – модели изделия конструктор может получить его чертеж без рутинного создания видов средствами плоского черчения.

Геометрические модели

При решении большинства задач в области автоматизированного конструирования и технологической подготовки производства необходимо учитывать форму проектируемого изделия. Из этого следует, что геометрическое моделирование, понимаемое как процесс воспроизведения пространственных образов изделий и исследования характеристик изделий по этим образам, является ядром автоматизированного проектирования. Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчета различных характеристик изделий, технологических параметров его изготовления и т. д. На рис. 1. показано, какие задачи решаются с помощью геометрической модели в системе автоматизированного проектирования (САПР). Под геометрическими моделями понимаются модели, содержащие информацию о форме и геометрии изделия, технологическую, функциональную и вспомогательную информацию.

Рис. 1. Задачи, решаемые с помощью геометрической модели

Развитие методов и средств геометрического моделирования определило изменение ориентации графических подсистем САПР. В САПР можно выделить два вида построения графических подсистем:

1. Ориентированные на чертеж.

2. Ориентированные на объект.

Системы первого поколения, ориентированные на чертеж, обеспечивают необходимые условия для создания конструкторской документации. В таких системах создается не объект (деталь, узел), а графический документ.

Эволюция графических подсистем САПР привела к тому, что системы, ориентированные на чертеж, постепенно утрачивают свое значение (особенно в области машиностроения) и все большее распространение получают системы, ориентированные на объект. На рис. 2 показана эволюция ориентации графических подсистем САПР за последние десятилетия.

Рис. 2. Ядро графической подсистемы САПР:

а – чертеж; б – данные чертежа; в – трехмерная геометрическая модель

На начальных этапах разработки и внедрения САПР основным документом обмена между различными подсистемами был чертеж (рис. 2а). Следующее поколение графических подсистем использовало в качестве данных, через которые обеспечивался обмен с функциональными подсистемами САПР, данные чертежа (рис. 2б). Это позволило перейти на безбумажную технологию проектирования. В графических подсистемах, интегрированных САПР, ядром являются трехмерные геометрические модели проектируемых изделий (рис. 2в). При этом различные двумерные изображения трехмерной модели формируются в таких подсистемах автоматически.

Результатом геометрического моделирования некоторого объекта является математическая модель его геометрии. Математическая модель позволяет графически отобразить моделируемый объект, получить его геометрические характеристики, выполнить исследование многих физических свойств объекта путем постановки численных экспериментов, подготовить производство и, наконец, изготовить объект.

Для того чтобы увидеть, как выглядит объект, нужно смоделировать поток падающих и возвращающихся от его поверхностей лучей света. При этом граням модели можно придать необходимый цвет, прозрачность, фактуру и другие физические свойства. Модель можно осветить с разных сторон светом различного цвета и интенсивности.

Геометрическая модель позволяет определить массово-центровочные и инерционные характеристики проектируемого объекта, выполнить измерения длин и углов его элементов. Она дает возможность произвести расчет размерных цепей и определить собираемость проектируемого объекта. Если объект представляет собой механизм, то на модели можно проверить его работоспособность и выполнить расчет кинематических характеристик.

Используя геометрическую модель, можно поставить численный эксперимент по определению напряженно-деформированного состояния, частот и форм собственных колебаний, устойчивости элементов конструкции, тепловых, оптических и других свойств объекта. Для этого нужно дополнить геометрическую модель физическими свойствами, смоделировать внешние условия ее работы и, используя физические законы, выполнить соответствующий расчет.

По геометрической модели можно вычислить траекторию режущего инструмента для механической обработки объекта. При выбранной технологии изготовления объекта геометрическая модель позволяет спроектировать оснастку и выполнить подготовку производства, а также проверить саму возможность изготовления объекта данным способом и качество этого изготовления. Кроме того, возможна графическая имитация процесса изготовления. Но для того, чтобы изготовить объект, кроме геометрической информации нужна информация о технологическом процессе, производственном оборудовании и многом другом, связанном с производством.

Многие из перечисленных проблем образуют самостоятельные разделы прикладной науки и по своей сложности не уступают, а в большинстве случаев и превосходят проблему создания геометрической модели. Геометрическая модель является отправной точкой для дальнейших действий. При построении геометрической модели мы не использовали физические законы, радиус-вектор каждой точки границы раздела внешней и внутренней частей моделируемого объекта является известным, поэтому при построении геометрической модели нам приходится составлять и решать алгебраические уравнения.

Задачи, в которых используются физические законы, приводят к дифференциальным и интегральным уравнениям, решение которых сложнее решения алгебраических уравнений.

В данной главе остановимся на выполнении расчетов, не связанных с физическими процессами. Мы рассмотрим вычисление чисто геометрических характеристик тел и их плоских сечений: площади поверхности, объема, центра масс, моментов инерции и ориентации главных осей инерции. Эти расчеты не требуют привлечения дополнительной информации. Кроме этого, мы рассмотрим проблемы численного интегрирования, которые приходится решать при определении геометрических характеристик.

Определение площади, центра масс и моментов инерции плоского сечения тела приводит к вычислению интегралов по площади сечения. Для плоских сечений мы располагаем информацией об их границах. Интегралы по площади плоского сечения мы сведем к криволинейным интегралам, которые в свою очередь сводятся к определенным интегралам. Определение площади поверхности, объема, центра масс, моментов инерции тела приводит к вычислению поверхностных и объемных интегралов. Мы будем опираться на представление тела с помощью границ , т. е. на описание тела совокупностью ограничивающих его поверхностей и топологическую информацию о взаимном соседстве этих поверхностей. Мы сведем интегралы по объему тела к поверхностным интегралам по поверхностям граней тела, которые в свою очередь сводятся к двойным интегралам. В общем случае область интегрирования представляет собой связную двухмерную область. Вычисление двойных интегралов численными методами можно выполнить для областей простых типов - четырехугольной или треугольной формы. В связи с этим в конце главы рассмотрены методы вычисления определенных интегралов и двойных интегралов по четырехугольным и треугольным областям. Методы разбивки областей определения параметров поверхностей на совокупности треугольных подобластей рассмотрены в следующей главе.

В начале главы рассмотрим сведение интегралов по площади к криволинейным интегралам и сведение объемных интегралов к поверхностным интегралам. На этом будут базироваться вычисления геометрических характеристик моделей.


Геометрическое моделирование

Векторная и растровая графика.

Графика бывает двух видов - векторная и растровая. Основное отличие - в принципе хранения изображения. Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и еще одно преимущество - при изменении размеров изображения не изменяется размер файла.Растровая графика - это прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей).

Растровое изображение можно сравнить с детской мозаикой, когда картинка составляется из цветных квадратиков. Компьютер запоминает цвета всех квадратиков подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большего объема памяти. Их сложно масштабировать и еще сложнее редактировать. Чтобы увеличить изображение, приходится увеличивать размер квадратиков, и тогда рисунок получается "ступенчатым". Для уменьшения растрового рисунка приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается, его мелкие детали становятся неразборчивыми. Этих недостатков лишена векторная графика. В векторных редакторах рисунок запоминается как совокупность геометрических фигур - контуров, представленных в виде математических формул. Чтобы пропорционально увеличить объект, достаточно просто изменить одно число: коэффициент масштабирования. Никаких искажений ни при увеличении, ни при уменьшении рисунка не возникает. Поэтому, создавая рисунок, вы можете не думать о его конечных размерах - вы всегда можете изменить их.

Геометрические преобразования

Ве́кторная гра́фика - это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Рассмотрим, к примеру, окружность радиуса r. Список информации, необходимой для полного описания окружности, таков:



радиус r ;

координаты центра окружности;

цвет и толщина контура (возможно прозрачный);

цвет заполнения (возможно прозрачный).

Преимущества этого способа описания графики над растровой графикой:

Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта).

Соответственно, можно бесконечно увеличить, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.

При увеличении или уменьшении объектов толщина линий может быть постоянной.

Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах ((англ.)), которые ведут к наилучшей возможной растеризации на растровых устройствах.

У векторной графики есть два фундаментальных недостатка.

Не каждый объект может быть легко изображен в векторном виде. Кроме того, количество памяти и времени на отображение зависит от числа объектов и их сложности.

Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет - трассировка растра обычно не обеспечивает высокого качества векторного рисунка.

Векторные графические редакторы, типично, позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять основные аффинные преобразования над объектами, изменять z-order и комбинировать примитивы в более сложные объекты.

Более изощрённые преобразования включают булевы операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д.

Векторная графика идеальна для простых или составных рисунков, которые должны быть аппаратно-независимыми или не нуждаются в фотореализме. К примеру, PostScript и PDF используют модель векторной графи

Линии и ломаные линии.

Многоугольники.

Окружности и эллипсы.

Кривые Безье.

Безигоны.

Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье).

Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях.

Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.

Основные виды геометрических моделей

Геометрические модели дают внешнее представление об объекте-оригинале и характеризуются одинаковыми с ним пропорциями геометрических размеров. Эти модели подразделяются на двумерные и трехмерные. Эскизы, схемы, чертежи, графики, живописные работы представляют собой примеры двумерных геометрических моделей, а макеты зданий, автомобилей, самолетов и т.д. – это трехмерные геометрические модели.

Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:

матрица поворота

матрица сдвига

матрица масштабирования

Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/промасштабированный относительно исходного

Под геометрической моделью объекта понимается совокупность сведений, однозначно определяющих его конфигурацию и геометрические параметры.

В настоящее время существует два подхода к автоматизированному созданию геометрических моделей с использованием компью­терных технологий.

Первый подход, представляющий традиционную технологию создания графических изображений, базируется на двухмерной геометрической модели и фактическом использовании компьютера как электронного кульмана, позволяющего ускорить процесс вычерчивания объекта и улучшить качество оформления конструкторской документации. Центральное место при этом занимает чер­теж, который служит средством представления изделия на плоскости в виде ортогональных проекций, видов, разрезов и сечений и содержит всю необходимую информацию для разработки технологического процесса изготовления изделия. В двухмерной модели геометрия изделия отображается в компьютере как плоский объект, каждая точка которого представляется с помощью двух координат: X и Y.

Очевидны основные недостатки использования двухмерных моделей при автоматизированном проектировании:

Создаваемую конструкцию объекта приходится мысленно представлять в виде отдельных элементов чертежа (ортогональных проекций, видов, разрезов и сечений), что является сложным процессом даже для опытных разработчиков и зачастую приводит к ошибкам проектирования конструкций изделий;

Все графические изображения на чертеже (ортогональные проекции, виды, разрезы, сечения) создаются независимо друг от друга и поэтому ассоциативно не связаны, то есть каждое изменение объекта проектирования ведет за собой необходимость выполнения изменений (редактирования) в каждом соответствующем графическом изображении чертежа, что является трудоемким процессом и причиной значительного количества ошибок при модификации конструкций изделий;

Невозможность использования полученных чертежей для создания компьютерных моделей контрольных сборок объектов из составляющих компонентов (агрегатов, узлов и деталей);

Сложность и высокая трудоемкость создания аксонометрических изображений сборочных единиц изделий, их каталогов и руководств по их эксплуатации;

Двухмерные модели неэффективно использовать на последующих (после создания конструкции изделия) этапах производственного цикла.

Второй подход к разработке графических изображений объектов проектирования основан на использовании трехмерных геометрических моделей объектов, которые создаются в автоматизированных системах трехмерного моделирования. Такие компьютерные модели являются наглядным спо­собом представления объектов проектирования, что позволяет исключить перечисленные недостатки двухмерного моделирования и значительно расширить эффективность и области применения трехмерных моделей на различных этапах производственного цикла изготовления изделий.

Трехмерные модели служат для компьютерного представления моделей изделий в трех измерениях, то есть геометрия объекта представляется в компьютере с помощью трех координат: X, Y и Z. Это позволяет перестраивать аксонометрические проекции моделей объектов в различных пользовательских системах координат, а также получать их аксонометрические виды с любой точки зрения или визуализировать их в виде перспективы. Поэтому трехмерные геометрические модели обладают значительными преимуществами по сравнению с двухмерными моделями и позволяют значительно повысить эффективность проектирования.

Основные достоинства трехмерных моделей:

Изображение наглядно и просто воспринимается проектировщиком;

Чертежи деталей создаются с помощью автоматически получаемых проекций, видов, разрезов и сечений трехмерной модели объекта, что значительно повышает производительность разработки чертежей;

Изменения в трехмерной модели автоматически вызывают соответствующие изменения в ассоциативно связанных графических изображениях чертежа объекта, что позволяет быстро модифицировать чертежи;

Возможно создание трехмерных моделей виртуальных контрольных сборок и каталогов изделий;

Трехмерные модели используются для создания операционных эскизов технологических процессов изготовления деталей и формообразующих элементов технологической оснастки: штампов, прессформ, литейных форм;

С помощью трёхмерных моделей можно проводить имитирование работы изделий с целью определения их работоспособности до изготовления;

Трехмерные модели используются в системах автоматизированной подготовки программ для автоматического программирования траекторий перемещения рабочих органов многокоординатных станков с числовым программным управлением;

Эти достоинства позволяют эффективно использовать трехмерные модели в системах автоматизированного управления жизненным циклом изделий.

Различают три основных вида трехмерных моделей:

- каркасные (проволочные), в которых изображения представляются координатами вершин и соединяющими их ребрами;

- поверхностные , представляемые поверхностями, ограничивающими создаваемую модель объекта;

- твердотельные , которые формируется из моделей сплошных тел;

- гибридные .

Трехмерные графические модели содержат информацию обо всех графических примитивах объекта, расположенного в трехмерном пространстве, то есть строится числовая модель трехмерного объекта, каждая точка которого имеет три координаты (X,Y,Z).


Каркасная модель представляет объемное изображение объекта в виде линий пересечения граней объекта. В качестве примера на рис.10.1 показана каркасная модель и структура данных компьютерной модели внутренних вычислений тетраэдра.

Рис. 10.1. Структура данных каркасной модели тетраэдра

Основные недостатки каркасных моделей:

Невозможно автоматическое удаление скрытых линий;

Возможность неоднозначного представления объекта;

В сечении объекта плоскостями будут только точки пересечения ребер объекта;

Однако каркасные модели не требуют большого количества вычислений, то есть высокого быстродействия и большой компьютерной памяти. Поэтому они экономичны с точки зрения использования их при создании компьютерных изображений.

В поверхностных моделях объемное изображение объекта представляется в виде совокупности отдельных поверхностей.

При создании трехмерных поверхностных моделей используются аналитические и сплайн-поверхности.

Аналитические поверхности (плоскость, цилиндр, конус, сфера и др.) описываются математическими уравнениями.

Сплайн-поверхности представляются массивами точек, между которыми положения остальных точек определяются с помощью математической аппроксимации. На рис. 10.2б показан пример сплайн-поверхности, созданной перемещением плоского эскиза (рис.10.2а) в выбранном направлении.


Рис. 10.2. Пример сплайн-поверхности

Недостатки поверхностных моделей:

В сечении объекта плоскостями будут только линии пересечения поверхностей объекта с секущими плоскостями;

Невозможно выполнение логических операций сложения, вычитания и пересечения объектов.

Достоинства поверхностных моделей:

Однозначное представление объекта;

Возможность создания моделей объектов, имеющих сложные по конфигурации поверхности.

Трехмерные поверхностные модели нашли широкое применение при создании моделей сложных объектов, состоящих из поверхностей, относительная толщина которых намного меньше размеров создаваемых моделей объектов (корпус судна, фюзеляж самолета, кузов автомобиля и др.).

Кроме того, поверхностные модели используются при создании гибридных твердотельных моделей с использованием поверхностно-ограниченных моделей, когда создание твердотельной модели очень сложно или невозможно вследствие сложных поверхностей объекта.

Твердотельная модель является реальным представлением объекта, так как структура компьютерных данных включает координаты точек всего тела объекта. Это позволяет осуществлять логические операции над объектами: объединение, вычитание и пересечение.

Существует две разновидности твердотельных моделей: поверхностно-ограниченная и объемная.

В поверхностно-ограниченной твердотельной модели границы объекта формируются с помощью поверхностей.

Для объемной твердотельной модели модель внутренних вычислений представляет координаты точек всего твердого тела. Очевидно, что твердотельные модели объектов требуют выполнения большого количества вычислений по сравнению с каркасными и поверхностными моделями, так как в процессе их преобразований требуется пересчет координат всех точек тела объекта и в связи с этим – больших вычислительных мощностей компьютеров (быстродействия и оперативной памяти). Однако эти модели обладают достоинствами, позволяющими эффективно использовать их в процессе автоматизированного проектирования:

Возможно автоматическое удаление скрытых линий;

Наглядность и невозможность неоднозначного представления объекта;

В сечении объекта плоскостями будут получаться разрезы, используемые при создании чертежей;

Возможно выполнение логических операций сложения, вычитания и пересечения объектов.

На рис.10.3 в качестве иллюстрации показаны результаты сечения плоскостью различных типов трехмерных моделей параллелепипеда: каркасной, поверхностной и твердотельной.


Рис. 10.3. Сечения плоскостью различных типов трехмерных моделей

Эта иллюстрация показывает, что с помощью трехмерных моделей возможно получение разрезов и сечений, что требуется выполнять при создании чертежей изделий.

Принцип создания сложной модели объекта основан на последовательном выполнении трех логических (булевых) операций с твердотельными моделями(рис.10.4): гибридная модель , представляющая собой комбинацию поверхностно-ограниченной модели и объемной твёрдотельной модели, что позволяет использовать преимущества обеих моделей.

Достоинства твердотельных и гибридных моделей являются основной причиной их широкого использования при создании трехмерных моделей объектов, несмотря на необходимость выполнения большого количества вычислений и, соответственно, применения компьютеров, имеющих большую память и высокое быстродействие.

Вверх