Основной закон вращательного движения твердого тела. Вывод основного закона динамики вращательного движения. Основные элементы кинематики неравномерного вращательного движения

Вывод основного закона динамики вращательного движения. К выводу основного уравнения динамики вращательного движения. Динамика вращательного движения материальной точки. В проекции на тангенциальное направление уравнение движения примет вид: Ft = mt.

15.Вывод основного закона динамики вращательного движения.

Рис. 8.5. К выводу основного уравнения динамики вращательного движения.

Динамика вращательного движения материальной точки. Рассмотрим частицу массы m, вращающуюся вокруг токи О по окружности радиуса R , под действием результирующей силы F (см. рис. 8.5). В инерциальной системе отсчета справедлив 2 ой закон Ньютона. Запишем его применительно к произвольному моменту времени:

F = m· a .

Нормальная составляющая силы не способна вызвать вращения тела, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление уравнение движения примет вид:

F t = m·a t .

Поскольку a t = e·R, то

F t = m·e·R (8.6)

Умножив левую и правую части уравнения скалярно на R, получим:

F t ·R= m·e·R 2 (8.7)
M = I·e. (8.8)

Уравнение (8.8) представляет собой 2 ой закон Ньютона (уравнение динамики) для вращательного движения материальной точки. Ему можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения (см. рис. 8.5):

M = I· e . (8.9)

Основной закон динамики материальной точки при вращательном движении можно сформулировать следующим образом:

произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.


А также другие работы, которые могут Вас заинтересовать

66899. Язык и мышление, Логическая и языковая картины мира 132.5 KB
Невербальное мышление осуществляется посредством наглядно-чувственных образов, возникающих в результате восприятия впечатлений действительности, которые сохраняются памятью и затем воссоздаются воображением. Невербальное мышление характерно в той или иной степени для некоторых животных.
66900. ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА 51.5 KB
К механическим свойствам относят прочность сопротивление металла сплава деформации и разрушению и пластичность способность металла к необратимой без разрушения деформации остающейся после удаления деформирующих сил. Кроме того напряжения возникают в процессе кристаллизации при неравномерной...
66902. Особенности расследования убийств, совершенных на бытовой почве 228 KB
Криминалистическая характеристика убийств. Особенности первоначального этапа расследования. Типовые ситуации первоначального этапа расследования. Особенности организации и производства первоначальных следственных. Особенности применения специальных познаний...
66904. КУЛЬТУРА ДРЕВНЕЙШЕГО МИРА 62.5 KB
Литературоведение - наука о художественной литературе, ее происхождении, сущности и развитии. Современное литературоведение состоит из трех самостоятельных, но тесно связанных между собой дисциплин (разделов): теории литературы, истории литературы и литературной критики
66905. Логические элементы 441 KB
Рассматриваются принципы работы, характеристики и типовые схемы включения простейших логических элементов - инверторов, буферов, элементов И и ИЛИ, а также приводятся схемотехнические решения, позволяющие реализовать на их основе часто встречающиеся функции.
66906. Модели и процессы управления проектами программных средств 257.5 KB
Назначение методологии СММ/CMMI – системы и модели оценки зрелости – состоит в предоставлении необходимых общих рекомендаций и инструкций предприятиям, производящим ПС, по выбору стратегии совершенствования качества процессов и продуктов, путем анализа степени их производственной зрелости и оценивания факторов...

Моментом силы относительно неподвижной точки O называется векторная физическая величина, определяемая векторным произведением радиус-вектора , проведённого из точки O в точку A приложения силы, на силу (рис.1.4.1):

(1.4.1)

Здесь – псевдовектор, его направление совпадает с направлением движения правого винта при его вращении отк.

Модуль момента силы

,

где
– угол междуи,
– кратчайшее расстояние между линией действия силы и точкойО плечо силы .

Моментом силы относительно неподвижной оси z
, равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки
O данной оси z (рис. 1.4.1).

Работа при вращении тела равна произведению момента действующей силы на угол поворота:

.

С другой стороны эта работа идёт на увеличение его кинетической энергии:

, но

, поэтому

, или
.

Учитывая, что
, получим

. (1.4.2)

Получили основное уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: момент внешних сил, действующих на тело, равен произведению момента инерции тела на угловое ускорение.

Можно показать, что если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство:


,

где I – главный момент инерции тела (момент инерции относительно главной оси).

1.5 Момент импульса и закон его сохранения

Моментом импульса материальной точки А относительно неподвижной точки О называется векторная физическая величина, определяемая векторным произведением :

(1.5.1)

где – радиус-вектор, проведённый из точкиО в точкуА ;
– импульс материальной точки (рис. 1.5.1).
– псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса

,

где
– угол между векторамии,– плечо вектораотносительно точкиО .

Моментом импульса относительно неподвижной оси z называется скалярная величина
, равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки
О данной оси. Значение момента импульса
не зависит от положения точкиО на осиz .

При вращении абсолютно твёрдого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиусас некоторой скоростью. Скоростьи импульс
перпендикулярны этому радиусу, т.е. радиус является плечом вектора
. Поэтому можно записать, что момент импульса отдельной частицы

и направлен по оси в сторону, определяемую правилом правого винта.

Момент импульса твёрдого тела относительно оси есть сумма моментов импульсов отдельных частиц:

.

Используя формулу
, получим

, т.е.
. (1.5.2)

Таким образом, момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (1.5.2) по времени:

, т.е.
. (1.5.3)

Это выражение – ещё одна форма основного уравнения (закона) динамики вращательного движения твёрдого тела относительно неподвижной оси: производная по времени от момента импульса механической системы (твёрдого тела) относительно оси равна главному моменту всех внешних сил, действующих на эту систему, относительно той же оси .

Можно показать, что имеет место векторное равенство
.

В замкнутой системе момент внешних сил
и
, откуда

. (1.5.4)

Выражение (1.5.4) представляет собой закон сохранения момента импульса : момент импульса замкнутой системы сохраняется.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (таблица 1.5.1).

Таблица 1.5.1

Поступательное

движение

Вращательное

движение

Функциональная

зависимость

Линейное перемещение

перемещение

Линейная скорость

скорость

Линейное ускорение

ускорение

(для материальной точки)

импульса

Основное уравнение динамики



Работа

Работа вращения

Кинетическая энергия

Кинетическая энергия вращения

Закон сохранения импульса

Закон сохранения момента импульса

ЛЕКЦИЯ №4

ОСНОВНЫЕ ЗАКОНЫ КИНЕТИКИ И ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. МЕХАНИЧЕСКИЕ

СВОЙСТВА БИОТКАНЕЙ. БИОМЕХАНИЧЕСКИЕ

ПРОЦЕССЫ В ОПОРНО-ДВИГАТЕЛЬНОМ АППАРАТЕ

ЧЕЛОВЕКА.

1. Основные законы кинематики вращательного движения.

Вращательные движения тела вокруг неподвижной оси является наиболее простым видом движения. Оно характеризуется тем, что любые точки тела описывают окружности, центры которых расположены на одной прямой 0 ﺍ 0 ﺍﺍ , которая называется осью вращения (рис.1).

При этом положение тела в любой момент времени определяется углом поворота φ радиуса вектора R любой точки А относительно своего начального положения. Зависимость его от времени:

(1)

является уравнением вращательного движения. Быстрота вращения тела характеризуется угловой скоростью ω. Угловая скорость всех точек вращательного тела одинакова. Она является векторной величиной. Этот вектор направлен по оси вращения и связан с направлением вращения правилом правого винта:

. (2)

При равномерном движении точки по окружности

, (3)

где Δφ=2π – угол, соответствующий одному полному обороту тела, Δt=T – время одного полного оборота, или период вращения. Единица измерения угловой скорости [ω]=c -1 .

При равномерном движении ускорение тела характеризуется угловым ускорением ε (вектор его расположен аналогично вектору угловой скорости и направлен согласно с ним при ускоренном и в обратном направлении – при замедленном движении):

. (4)

Единица измерения углового ускорения [ε]=c -2 .

Вращательное движение можно характеризовать также линейной скоростью и ускорением его отдельных точек. Длина дуги dS, описываемой любой точкой А (рис.1) при повороте на угол dφ определяется по формуле: dS=Rdφ. (5)

Тогда линейная скорость точки :

. (6)

Линейное ускорение а :

. (7)

2. Основные законы динамики вращательного движения.

Вращение тела вокруг оси вызывается силой F, приложенной к любой точке тела, действующей в плоскости перпендикулярной оси вращения и направленной (или имеющей составляющую в этом направлении) перпендикулярно радиусу вектору точки приложения (рис.1).

Моментом силы относительно центра вращения называют векторную величину, численно равную произведению силына длину перпендикуляраd, опущенного из центра вращения на направление силы, называемого плечом силы. На рис.1 d=R, поэтому

. (8)

Момент вращающей силы является векторной величиной. Векторприложен к центру окружности О и направлен вдоль оси вращения. Направление векторасогласуется с направлением силы по правилу правого винта. Элементарная работаdA i , при повороте на малый угол dφ, когда тело проходит малый путь dS, равна:

Мерой инертности тела при поступательном движении является масса. При вращении тела мера его инертности характеризуется моментом инерции тела относительно оси вращения.

Моментом инерции I i материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния её от оси (рис.2):

. (10)

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, из которых состоит тело:

. (11)

Или в пределе (n→∞):
, (12)

где интегрирование производится по всему объёмуV. Подобным образом вычисляются моменты инерции однородных тел правильной геометрической формы. Момент инерции выражается в кг·м 2 .

Момент инерции человека относительно вертикальной оси вращения, проходящей через центр масс (центр масс человека находится в сагиттальной плоскости несколько впереди второго крестового позвонка), в зависимости от положения человека имеет следующие значения: 1,2 кг·м 2 при стойке «смирно»; 17 кг·м 2 – в горизонтальном положении.

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела:

Продифференцировав (14), получим элементарное изменение кинетической энергии:

. (15)

Приравняв элементарную работу (формула 9) внешних сил к элементарному изменению кинетической энергии (формула 15), получим:
, откуда:
или, учитывая, что
получим:
. (16)

Это уравнение называется основным уравнением динамики вращательного движения. Эта зависимость аналогична IIзакону Ньютона для поступательного движения.

Моментом импульса L i материальной точки относительно оси называется величина, равная произведению импульса точки на расстояние её до оси вращения:

. (17)

Момент импульса Lтела, вращающегося вокруг неподвижной оси:

Момент импульса есть векторная величина, ориентированная по направлению вектора угловой скорости.

Теперь возвратимся к основному уравнению (16):

,
.

Подведём постоянную величину Iпод знак дифференциала и получим:
, (19)

где Mdtназывают импульсом момента силы. Если на тело не действуют внешние силы (М=0), то равно нулю и изменение момента количества движения (dL=0). Это означает, что момент импульса остаётся постоянным:
. (20)

Этот вывод называется законом сохранения момента импульса относительно оси вращения. Его используют, например, при вращательных движениях относительно свободной оси в спорте, например в акробатике и т.д. Так, фигурист на льду, изменяя в процессе вращения положение тела и соответственно момент инерции относительно оси вращения, может регулировать свою скорость вращения.

Твёрдое тело, вращающееся вокруг некоторых осей, проходящих через центр масс, если оно освобождено от внешних воздействий, сохраняет вращение неопределённо долго . (Это заключение аналогично первому закону Ньютона для поступательного движения).

Возникновение вращения твёрдого тела всегда вызывается действием внешних сил, приложенных к отдельным точкам тела. При этом неизбежно возникновение деформаций и появление внутренних сил, обеспечивающих в случае твёрдого тела практическое сохранение его формы. При прекращении действия внешних сил вращение сохраняется: внутренние силы не могут ни вызвать, ни уничтожить вращение твёрдого тела.

Результатом действия внешней силы на тело, имеющее неподвижную ось вращения, является ускоренное вращательное движение тела . (Это заключение аналогично второму закону Ньютона для поступательного движения).

Основной закон динамики вращательного движения : в инерциальной системе отсчёта угловое ускорение , приобретаемое телом, вращающимся относительно неподвижной оси, пропорционально суммарному моменту всех внешних сил , действующих на тело, и обратно пропорционально моменту инерции тела относительно данной оси:

Можно дать и более простую формулировку основному закону динамики вращательного движения (его ещё называют вторым законом Ньютона для вращательного движения ): вращающий момент равен произведению момента инерции на угловое ускорение :

Моментом импульса (моментом количества движения , угловым моментом ) тела называется произведение его момента инерции на угловую скорость :

Момент импульса – векторная величина. Его направление совпадает с направлением вектора угловой скорости.

Изменение момента импульса определяется следующим образом:

. (I.112)

Изменение момента импульса (при неизменном моменте инерции тела) может произойти, только вследствие изменения угловой скорости и всегда обусловлено действием момента силы .

Согласно формуле , а также формулам (I.110) и (I.112) изменение момента импульса можно представить в виде:

. (I.113)

Произведение в формуле (I.113) называется импульсом момента силы или движущим моментом . Он равен изменению момента импульса.

Формула (I.113) справедлива при условии, что момент силы не меняется с течением времени . Если же момент силы зависит от времени, т.е. , то

. (I.114)

Формула (I.114) показывает, что: изменение момента импульса равно интегралу по времени от момента силы . Кроме того, если эту формулу представить в виде: , то из неё будет следовать определение момента силы : мгновенный момент силы представляет собой первую производную момента импульса по времени ,

Лабораторная работа № 15

ИЗУЧЕНИЕ ДВИЖЕНИЯ ГИРОСКОПА

Цель работы: изучение законов вращательного движения, изучение движения (прецессии) гироскопа под действием момента сил.

Теория работы

Основные понятия. Основной закон вращательного движения

Моментом импульса материальной точки L относительно точки О называется векторное произведение радиуса-вектора этой точки на вектор ее импульсаp :

где r – радиус-вектор, проведенный из точки О в точку А, расположения материальной точки, p =mv – импульс материальной точки. Модуль вектора момента импульса:

где a - угол между векторами r и p , l – плечо вектора p относительно точки О. Вектор L, согласно определению векторного произведения перпендикулярен к плоскости в которой лежат векторы r и p (или v ), его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p по кратчайшему расстоянию, как показано на рисунке.

Моментом импульса относительно оси называется скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки на этой оси.

Моментом силы M материальной точки относительно точки О называется векторная величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку приложения силы, на силу F :

. Модуль вектора момента силы:

где a - угол между векторами r и F , d = r*sina – плечо силы – кратчайшее расстояние между линией действия силы и точкой О. Вектор M (также как L ) - псевдовектор, он перпендикулярен к плоскости в которой лежат векторы r и F , его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F по кратчайшему расстоянию, как показано на рисунке. Значение и направление вектора M также можно рассчитать математически используя определение векторного произведения.

Моментом силы относительно оси называется скалярная величина, равная проекции на эту ось вектора момента силы M определенного относительно произвольной точки на этой оси.

Основной закон динамики вращательного движения

Для выяснения назначения приведенных выше понятий рассмотрим систему из двух материальных точек (частиц) и затем обобщим результат на систему из произвольного числа частиц (т.е. на твердое тело.)

Пусть на частицы с массами m 1 , m 2 действуют внутренние f 12 , f 21 и внешние силы F 1 и F 2 .

Запишем второй закон Ньютона для каждой из частиц, а также вытекающую из третьего закона Ньютона связь между внутренними силами:

Умножим векторно уравнение (1) на r 1 , а уравнение (2) – на r 2 и сложим полученные выражения:

Преобразуем левые части уравнения (4), учитывая что

И векторы и параллельны и их векторное произведение равно нулю, тогда

(5 )

Первые два слагаемых справа в (4) равны нулю, так как внутренние силы f 12 , f 21 динаковы по величине и противоположно направлены (векторr 1 -r 2 направлен по одной и той же прямой, что и вектор f 12 ).

Вверх