Столкновение частиц в адронном коллайдере. Зачем нужен адронный коллайдер? Почему радуга иногда видна в виде полной дуги, а иногда лишь в виде фрагментов

Туннель ускорителя БАК. Фото CERN

В последние дни одними из самых часто употребляемых слов во всем мире стали слова "Большой адронный коллайдер". Гигантский ускоритель тяжелых элементарных частиц должен разгонять протоны до околосветовых скоростей и сталкивать их друг с другом. Будущие соударения должны породить новые частицы и уже породили массу слухов. В частности, слух о том, что коллайдер уничтожит Землю. Насколько оправданы эти страхи и для чего физики пугают своих соседей по планете? Конец света по науке

В среду, 10 сентября 2008 года, в 11:30 по московскому времени инженеры и ученые, собравшиеся на границе Швейцарии и Франции, нажмут на большую красную кнопку, и пучки протонов начнут движение по кольцу Большого адронного коллайдера. В четырех местах кольца протоны будут с огромной энерги ей сталкиваться друг с другом. Чудовищная сила удара приведет к рождению новых частиц с необычными свойствами. Так, при столкновениях появятся капельки так называемой "страной материи", или "страпельки", которые превращают в "странную материю" все, с чем контактируют.

Кроме того, столкновение протонов неизбежно приведет к образованию антиматерии – антипода "обычной" материи, из которой состоят люди, деревья, стенки туннеля БАК и сама планета Земля. При контакте частиц "обычной" и антиматерии обе они взаимоуничтожаются.

В БАК будет достигнута энерги я, достаточная для образования микроскопических черных дыр, – объектов огромной массы, которые притягивают к себе всю находящуюся поблизости материю. Сначала маленькая, постепенно черная дыра будет поглощать вещество и увеличиваться в размерах. Чем больше она будет становиться, тем быстрее будет поглощать материю. В конце концов возникшая в туннеле БАК черная дыра поглотит всю Землю. Примерно вот так:

И еще раз

Сколь бы величественна в своей чудовищности ни была эта картина, ничего подобного 10 сентября не произойдет. Как будут развиваться события в реальном БАК, а не в БАК из научной фантастики?

В среду, 10 сентября 2008 года, в 11:30 по московскому времени инженеры и ученые, собравшиеся на границе Швейцарии и Франции, запустят в туннель БАК длиной 27 километров пучок протонов. Сначала протоны пройдут по первому сегменту кольца (всего их восемь), потом по второму и, наконец, к концу дня элементарные частицы начнут циркулировать по всему кольцу ускорителя. Энергия инжекции (энерги я, с которой протоны запускают в ускоритель) будет составлять 450 гигаэлектронвольт. Никаких столкновений частиц 10 сентября происходить не будет, так как все они будут двигаться в одном направлении (по часовой стрелке).

На следующий день (или через несколько дней – пока трудно сказать точнее), ученые запустят протоны по кольцу БАК в противоположном направлении. Если оба запуска пройдут нормально, инженеры приступят к настройке огромных магнитов, которые выступают в роли регулировщиков движения протонов. Когда частицы запускаются в ускоритель, они движутся по прямой. Для того чтобы они не улетали за пределы кольца (и не повредили сам БАК), магниты искривляют траекторию движения протонов, заставляя их "держаться в полосе".

В первые несколько дней работы коллайдера специалисты должны убедиться, что элементарные частицы стабильно циркулируют по кольцу ускорителя. Если работа магнитов отлажена недостаточно, то орбита движения протонов может быть сбита. В этом случае подача протонов в БАК прекратится до тех пор, пока инженеры не настроят все параметры магнитной системы.

Факты о Большом адронном коллайдере
  • Длина окружности кольца ускорителя БАК равна 26659 метров
  • Максимальная скорость протонов в кольце ускорителя будет составлять 99,99 процента скорости света. За одну секунду пучок элементарных частиц сделает 11245 полных кругов по ускорителю
  • Каждую секунду частицы будут сталкиваться около 600 миллионов раз. Температура в месте столкновения будет в 100 тысяч раз больше, чем температура в центре Солнца
  • Внутри вакуумных труб, по которым движутся протоны, поддерживается давление 10 -13 атмосфер
  • Движением потока протонов управляют 9300 магнитов. Они охлаждаются до температуры -193,2 градуса по Цельсию (80 градусов по Кельвину) с помощью 10080 тонн жидкого гелия. Затем в охлаждающие модули заливают 60 тонн жидкого гелия, и температура магнитов падает до -271,3 градуса по Цельсию (1,9 градуса по Кельвину)
  • Только после того как работа магнитов будет полностью проверена, ученые планируют в первый раз столкнуть два пучка протонов. Энергия столкновений должна составить 900 гигаэлектронвольт (при энерги и инжекции каждого пучка в 450 гигаэлектронвольт). Такие столкновения не должны приводить к рождению опасных частиц. Ученые утверждают это не только из теор етических, но и из практических соображений: с такой энерги ей протоны сталкивались в других ускорителях, например в Теватроне , расположенном в штате Иллинойс в США (максимальная энерги я столкновения в этом ускорителе составляла 1,96 тераэлектронвольт).

    Во время "пробных" столкновений инженеры БАК смогут протестировать работу детект оров. Всего в кольце ускорителя находятся четыре детект ора: два больших ATLAS и CMS (по размеру они сравнимы с собором Парижской Богоматери), и два поменьше - ALICE и LHCb. Детекторы не только регистрируют сигнал от столкновения, но также усиливают его (одна из составных частей детект оров – экраны из вольфрамата свинца – были созданы российскими физиками). Конструкция больших и малых детект оров несколько отличается, однако и те, и другие переводят сигналы от столкновения частиц в электрические импульсы.

    Если все системы будут работать без сбоев, то к концу 2008 года ученые рассчитывают добиться энерги и столкновений в 10 тераэлектронвольт. Дополнительное ускорение пучкам протонов придают магниты, расположенные вдоль туннеля ускорителя. После того как эта цель будет достигнута, БАК остановят до начала 2009 года (эксперимент экспериментом, а от рождественских каникул физики отказываться не намерены). Протоны начнут сталкиваться с той самой чудовищной энерги ей в 14 тераэлектронвольт (с такой энерги ей, например, сталкиваются в полете два комара) не раньше нового года.

    При таких энерги ях ученые надеются обнаружить рождение новых частиц (правда, образования "страпелек" не ожидается). С момента стабилизации высокоэнергетичных пучков на детект оры польется нескончаемый поток данных. Эксперимент, проводимый на коллайдере, не похож на химические или биологические опыты, когда ученые совершают некие действия (например, добавляют в культур у клеток лекарство), смотрят на результат и исходя из него проводят следующие опыты. После того как БАК выйдет на свои номинальные параметры, ученые будут непрерывно анализировать получаемую информацию. Основой для выводов, которые будут делать исследователи, является статистика. Столкновения частиц - достаточно редкое явление даже в благоприятных для этого условиях коллайдера. Чтобы доказать или опровергнуть какую-то теор ию, необходимы тысячи столкновений.

    Новые сети

    Во время обсуждения проекта создания БАК вероятность коллапса информационного рассматривалась существенно серьезнее, чем физического. По предварительным оценкам, ежегодно с БАК будет поступать 15 петабайт (15 миллионов гигабайт) информации. Такое количество данных умещается на 1,7 миллиона двухслойных DVD.

    Это будут так называемые сырые данные (raw data). Для того чтобы с их помощью понять, что же произошло в ускорителе (ведь сфотографировать непосредственно столкновения частиц нельзя), полученную с детект оров информацию необходимо обработать. Сделать это с помощью одного или нескольких суперкомпьютеров, пусть даже самых мощных, не представляется возможным. Необходимые для обработки вычислительные мощности можно получить, только используя принцип распределенных вычислений.

    Компьютеры, на которых будут обрабатываться поступающие от БАК данные, будут находиться по всему миру. В идеале, каждый заинтересованный в эксперименте физик сможет участвовать в процессе со своего компьютера. До настоящего момента именно так были устроены все системы распределенных вычислений (наверное, самый известный пример – это проект SETI@home , участники которого ищут внеземную жизнь, обрабатывая сигналы радиотелескопов). Все они "довольствовались" структурой, предоставляемой интернетом. Для того чтобы "сладить" с БАК, этого недостаточно.

    Специально для проекта коллайдера в CERN была разработана система GRID, которую многие называют следующей стадией эволюции Сети. GRID предназначена для хранения и обработки больших массивов данных. Она включает в себя несколько подуровней. Коротко работу GRID можно описать следующим образом: сначала сырые данные с детект оров БАК поступают на сервера CERN, где они сохраняются и подвергаются первичной обработке. Затем информация передается в 11 крупных компьютерных центров, расположенных в Европе и США. Эти центры получили название центров первого уровня (Tier-1). С них данные рассылаются на 120 компьютерных центров второго уровня (Tier-2), которые предназначены для решения конкретных аналитических задач. Исследователи будут иметь доступ к данным с центров второго уровня со своих компьютеров.

    Название GRID было выбрано по аналогии с названием электросетей (electric power grid). Когда человек включает в своей квартире свет, энерги я, которая заставляет его лампочку светиться, может прийти из Красноярска или из ближнего Подмосковья. С ТЭЦ или АЭС энерги я поступает на электроподстанции, откуда распределяется по конечным пользователям. Этот же принцип реализован в GRID.

    Супермодель

    Под конец коснемся вопроса, зачем же физикам понадобился такой масштабный эксперимент (стоимость проекта БАК составляет более пяти миллиардов долларов - по другим оценкам, более восьми - без учета потребляемой коллайдером электроэнерги и, отдельные компоненты этой установки производились на заводах разных стран-участниц). Как читатель уже, вероятно, много раз слышал по телевизору и читал в интернете, с помощью БАК ученые хотят воссоздать условия, которые существовали во Вселенной сразу после Большого Взрыва. Если обратиться к истории создания других ускорителей, то выяснится, что они были сконструированы для этой же цели. Просто БАК является более совершенной моделью.

    После Большого Взрыва юные элементарные частицы сталкивались между собой, из них рождались новые частицы, и через миллиарды лет (по современным оценкам, 13,7 миллиарда лет назад) Вселенная приобрела тот вид, который имеет сейчас. Физики пытаются объяснить, как именно она устроена, и на сегодняшний день наиболее популярной является так называемая Стандартная модель. В частности, она объясняет, как именно частицы приобретают массу. Стандартная модель связывает массу частиц с так называемым полем Хиггса, элементарной частицей которого является бозон Хиггса. Его существование было предсказано в 1960-е годы физиком Питером Хиггсом, однако до сих пор эту частицу обнаружить не удавалось. В БАК будут созданы идеальные условия для ее появления. Если бозон Хиггса действительно существует, то рано или поздно он должен возникнуть в коллайдере (здесь ученым должна помочь накопленная статистика). В этом случае Стандартная модель из разряда теор ии перейдет в разряд факта. Наряду со свойством объяснять наблюдаемые явления "правильная" теор ия должна их предсказывать, а Стандартная модель предсказывает возникновение бозона Хиггса.

    Если за время работы БАК (сейчас физики ориентируются на 20 лет) бозон Хиггса найден не будет – тогда от Стандартной модели придется отказаться. Известный британский астрофизик, специалист по черным дырам и популяризатор науки Стивен Хокинг объявил, что поставил 100 долларов на то, что ученые не смогут обнаружить бозон Хиггса. По мнению Хокинга, отрицательный результат будет куда более интересным, чем положительный, так как он поставит под сомнение правомерность современной физики элементарных частиц. Если злополучная частица не будет найдена – ученым придется хорошенько "подумать еще раз".

    Помимо поисков природы массы и бозона Хиггса с помощью БАК физики рассчитывают подтвердить или опровергнуть теор ию суперсимметрии. Она предполагает, что у элементарных частиц существуют суперсимметричные партнеры. Экспериментальное доказательство суперсимметрии, в свою очередь, станет серьезным доводом в пользу правомерности теор ии струн, которая постул ирует, что базовыми составляющими элементарных частиц являются не еще более мелкие частицы, а протяженные одномерные струны (более подробно о теор ии струн можно прочитать ). Теория струн претендует на фундаментальный переворот наших представлений об "устройстве всего".

    Данные, полученные с помощью БАК, возможно, помогут физикам убедиться в том, что наш мир многомерен (только в этом случае, кстати, теор етически возможно образование в коллайдере микроскопических черных дыр). И это далеко не все, для чего науке может "пригодиться" коллайдер.

    Если бы было возможно выразить соотношение польза/риск для БАК в численном виде, то полученная цифра, вероятно, имела бы много знаков. Если разговаривать о катастрофических последствиях запуска коллайдера с серьезными учеными, то выражение "если предположить, что..., хотя это никак пока не доказано" будет встречаться приблизительно в каждом предложении. Несмотря на крайне низкую вероятность трагического развития событий, физики провели несколько исследований возможной опасности БАК и пришли к выводу, что она ничтожна. Последний отчет был опубликован несколько дней назад. Впрочем, истерия вокруг коллайдера (включая даже судебные процессы с требованием запретить его запуск , так как он угрожает существованию мира) привлекает внимание людей к этому грандиозному научному проекту. А тем, кто все-таки волнуется за сохранность планеты, можно посоветовать расслабиться - по крайней мере, до наступления нового года. Тем более что физики уже начали обсуждать проект нового коллайдера, в котором будут сталкиваться электроны и который по размеру превзойдет БАК.

    Предыдущие материалы по теме

      БАК: Будет Аннигиляционная Катастрофа?
      Представляет ли строящийся в ЦЕРНе Большой адронный коллайдер угрозу для жизни на Земле?

    Ссылки по теме

    • Большой адронный коллайдер прошел последнюю проверку - Lenta.ru, 25.08.2008
    • Тестовый пуск Большого адронного коллайдера назначен на 10 сентября - Lenta.ru, 08.08.2008
    • Закончена сборка многоцелевого детект ора Большого адронного коллайдера - Lenta.ru, 03.03.2008
    • Крупнейшая в мире криогенная система готова к тестированию - Lenta.ru, 08.11.2007
    • В Большом адронном коллайдере завершена установка сверхпроводящих магнитов - Lenta.ru, 27.04.2007
    • В Женеве появился Большой адронный коллайдер - Lenta.ru, 28.02.2007

    Сайты по теме

    Анонсы новостей

    1.1 . Физические основы коллайдеров

    Коллайдеры (ускорители со встречными пучками) - это установки, в которых осуществляется столкновение встречных ускоренных пучков заряженных частиц.
    В обычных ускорителях пучок частиц, ускоренных до высокой энергии, взаимодействует с частицами неподвижной мишени. При этом вследствие закона сохранения полного импульса большая часть энергии налетающих частиц расходуется на сохранение движения центра масс системы, т.е. на сообщение кинетической энергии частицам - продуктам распада. Лишь небольшая ее часть определяет полезную и эффективную энергию столкновения - энергию взаимодействия частиц в системе их центра масс (центре инерции), которая может расходоваться, например, на рождение новых частиц.
    При неподвижной мишени частица мишени с массой покоя m 0 в лабораторной системе отсчета имеет в центре масс энергию покоя E 0 = m 0 c 2 , а другая, налетающая частица, обладающая той же массой покоя m 0, движется в этой системе с релятивистской скоростью и обладает несравнимо большей энергией, чем покоящаяся частица (Е >> E 0). Энергия в системе центра масс (центра инерции) определяется формулой . Чем больше Е, тем меньшая ее доля составляет эффективную энергию взаимодействия частиц.
    Если же сталкиваются частицы, движущиеся с равными по величине, но противоположно направленными импульсами, то их суммарный импульс равен нулю. В этом случае лабораторная система отсчета совпадает с системой центра масс частиц и эффективная энергия столкновения равна сумме энергий сталкивающихся частиц. Для легких частиц с одинаковыми массами и энергией Е, Е цм = 2E эта кинетическая энергия может быть полностью использована на взаимодействие. .
    В системе центра масс частицы движутся навстречу друг другу с одинаковыми импульсами и энергиями E, суммарный импульс продуктов реакции равен нулю. Вся начальная энергия расходуется на интересующее нас рождение частиц, на проникновение в мелкомасштабную структуру материи.
    При столкновении частиц их энергия передается мельчайшим "капелькам" вещества, которые "взрываются", и мы наблюдаем разлет образовавшихся частиц. Исследователи узнают об устройстве вещества на мелкомасштабном уровне по специфическим распределениям этих частиц или по родившимся новым частицам (большинство из которых живут очень недолго) .
    Преимущество процесса взаимодействия на встречных пучках особенно велико для легких частиц - электронов, позитронов (из-за их малой энергии покоя). Ускорители с неподвижной мишенью и ускорители на встречных пучках считаются эквивалентными, если при одних и тех же сталкивающихся частицах они имеют одинаковые полезные энергии, затрачиваемые непосредственно на реакцию взаимодействия в центре масс. Формула, связывающая кинетические энергии частиц в эквивалентных ускорителях с неподвижной мишенью Е н и на встречных пучках Е цм. в ультрарелятивистском случае имеет вид : Е н = Е 2 цм. /2Е 0 . Используя это соотношение, можно подсчитать энергию для ускорителя с неподвижной мишенью, эквивалентного коллайдеру.
    Расчет показывает, что для получения кинетической энергии эквивалентной энергии БЭПК (LEP), равной Е цм = 0,209 ТэВ без использования встречных пучков энергия ускорителя должна была бы составлять E н = 4,274×10 4 ТэВ, а Е н.. / Е цм =2·10 5). Те же величины для адронного коллайдера LHC составляют E н = 1,044·10 5 ТэВ и Е н.. / Е цм =7500 (LEP и LHC - самые большие из построенных электрон-позитронных и адронных кольцевых коллайдеров) Из приведенных результатов расчета видно, что только используя схему встречных пучков, мы имеем возможность получать очень высокие эффективные энергии.
    При использовании меньших энергий можно было бы обойтись и традиционными ускорителями, однако реализация принципа столкновения частиц позволяет сделать установку существенно более компактной.

    1.2 . Сравнение кольцевых и линейных коллайдеров. Синхротронное излучение

    Как видно из Табл. 1а, за исключением коллайдера SLAC (СЛК, SLC), все построенные коллайдеры были кольцевыми. Кольцевые коллайдеры практически всегда более компактны, чем линейные. Необходимо отметить, однако, что использование кольцевых траекторий для ускорения легких частиц ограничивается сильным синхротронным излучением, возникающим при их вращении.
    Энергия синхротронного излучения U для релятивистской частицы зависит от её массы m 0 энергии Е, радиуса траектории ρ и определяется формулой :

    (1.1)

    Из-за большой разницы между массой покоя электронов и протонов при одинаковых энергиях и радиусах вращения мощность синхротронного излучения электронного пучка будет в 1013 раз больше чем протонного.
    В коллайдере БЭПК (LEP), где вращающийся пучок характеризовался следующими параметрами:
    Е ≈ 100 ГэВ, ρ = 4 км, В = 0,75 Тл, потери энергии на один оборот составляли 2 ГэВ. В случае протонных коллайдеров коэффициент 8,85×10 -5 в формуле (1.1) должен быть заменен на 7,8×10 -18 .
    Из-за больших синхротронных потерь, электрон - позитронные кольцевые коллайдеры на энергию в центре масс боٰльшую 208 БэВ не создавались. Тем не менее в работе рассматривался проект электрон - позитронного коллайдера, расположенного в тоннеле того же диаметра, что и коллайдер БЭПК (длина кольца 22,8 км). При светимости 10 32 см -2 с -1 энергия каждого пучка должна была бы составить 400 ГэВ. Чтобы покрыть потери на синхротронное излучение пришлось бы затратить 100 ГВ ВЧ мощности.
    В настоящее время при использовании электронов (позитронов) перспективными в ТэВ-м диапазоне в первую очередь считаются линейные коллайдеры. В тоже время разрабатываются кольцевые мюонные коллайдеры, где сталкиваются элементарные частицы с массой значительно превышающей массу электронов. Предполагается, что первые мюонные коллайдеры будут обладать энергией в центре масс 0,1 - 3 ТэВ и светимостью (1 - 5)×10 34 см -2 с -1 .

    1.3 . Основные параметры коллайдеров

    Первая основная характеристика коллайдера - энергия его пучков - выбирается исходя из задач физики элементарных частиц, которые предполагается решать при его создании. Обычно круг этих задач оказывается весьма широким. В Табл.2 -1 приведены данные о некоторых экспериментах, которые проводятся или будут проводиться в ряде коллайдеров высокой энергии. Краткие сведения о частицах, сталкиваемых в коллайдерах и о задачах, решаемых в физике элементарных частиц, будут рассмотрены в следующем разделе.
    Светимость коллайдера является его второй важнейшей характеристикой. С увеличением светимости увеличивается число сталкивающихся частиц. Геометрическая светимость зависит от частоты (f) cтолкновений сгустков, числа частиц в сгустке каждого пучка (n 1 и n 2) и от поперечного сечения сгустка (S). Светимость (L) определяется формулой :

    При столкновении частиц между ними может произойти взаимодействие, а может и не произойти. Имеется возможность определить только вероятность того или иного исхода столкновения. Вероятность взаимодействия определяется величиной поперечного эффективного сечения взаимодействия σ, которое имеет размерность площади (см 2) и определяется формулой:

    σ = N/L, (2.1)

    где N - число частиц, которые испытали взаимодействие в единицу времени (неупругие столкновения). Величина σ обычно выражается в миллибарнах (1 мбарн = 10 -27 см 2). В работе и в ряде других работ приводится формула, определяющая величину светимости, где учитываются эмиттанс пучка, гауссово распределение электронов в сгустке, учитывается также величина полного угла столкновения сгустков.
    Часто используют понятие интегральной светимости (или интеграл светимости), то есть светимость, умноженная на время работы ускорителя в течение «стандартного ускорительного года. Длительность одного стандартного года обычно принимают равным 10 6 - 10 7 секунд, что примерно равно четырем месяцам. Интегральную светимость обычно выражают в обратных пикобарнах (пбарн -1) или обратных фемтобарнах (фбарн -1).
    Для того чтобы узнать, как часто будет происходить какой-то процесс на конкретном коллайдере, надо умножить сечение процесса на светимость коллайдера (N = σL). Из-за неидеальной эффективности детектора количество реально зарегистрированных событий будет, конечно, меньше.
    Не всегда стремятся к получению максимально возможной светимости. Если в каждом сгустке адронного коллайдера будет очень много частиц, то при их столкновении одновременно будет происходить несколько независимых протон-протонных столкновений. Детектор будет фиксировать наложенные друг на друга следы сразу всех этих столкновений, что затруднит анализ процесса взаимодействия.
    Поскольку сечение процессов убывает как квадрат энергии частиц, светимость коллайдеров на большую энергию должна быть исключительно высокой. Значения светимости некоторых построенных коллайдеров приведены выше в Табл.1-В и 2-В

    Таблица № 2.1. Исследования, проводимые на некоторых коллайдерах

    Наименование
    коллайдера
    Энергия пучков
    коллайдера,
    ГэВ
    Светимость
    коллайдера
    10 30 см -2 с -1
    Некоторые исследования, проводимые на коллайдере
    KEKB е − : 8
    е + :3,5
    16270
    PEP-II е − : 7-12
    е + : 2,5- 4
    10025 Получение тяжелых кварков и тяжелых лептонов. В-фабрика - получение В мезонов, исследование нарушения симметрии
    SLC

    е + е − : 91

    6 ИсследованиеZ 0 бозона

    е + е − : 100-104,6

    24 на Z 0
    100 при > 90 ГэВ
    Исследование бозонов слабого взаимодействия Z 0 и W ±
    171 Поиск бозонов Хиггса
    RHIC pp,
    Au-Au,
    Cu-Cu,
    d-Au:100/n
    10; 0,0015; 0,02; 0,07

    Большой адронный коллайдер
    БАК (LHC)

    pp: 3500
    (план 7000)
    Pb-Pb: 1380/n
    (план 2760)
    10000 (план) Поиск бозонов Хиггса.
    Изучение кварк-глюонной плазмы
    Международный линейный коллайдер, ILC
    Компактный линейный коллайдер,CLIC Исследование бозонов Хиггса

    Проектное значение введенного в 2009 г в эксплуатацию Большого адронного коллайдера БАК (LHC) в ЦЕРН определено в L =10 34 см -2 с -1 . Если предположить что поперечное эффективное сечение взаимодействия в центре масс в коллайдере БАК составляет σ = 80 мб , то при работе БАК на энергии в центре масс 14 ГэВ величина N = 8×10 8 с - 1 .
    Предполагается, что продолжительность работы коллайдера составит примерно 10 7 с в год, а его интегральная светимость за год составит около 10 41 см -2 . При σ = 80 мб в год может происходить 8×10 15 событий. В большинстве из этих событий будет рождаться несколько тысяч частиц. Никакие электронные и компьютерные системы не в состоянии обработать такой поток информации. Столь высокая светимость, однако, необходима при исследовании крайне редких событий с малым поперечным сечением, которые характерны для новой физики. При хорошей электронике, позволяющей осуществлять надежный отбор событий с заранее известными признаками, можно получать информацию примерно до ста событий в год в процессе с очень низким сечением σ = 1 фб. Именно для работы с такими событиями и нужна высокая светимость коллайдера .
    К третьей основной характеристике коллайдера можно отнести тип сталкивающихся частиц. Из приведенных выше Табл.1-В и Табл.2-В видно, что построены и используются как электрон - позитронные, протон-антипротонные коллайдеры, так и электрон-протонные коллайдеры. Следует отметить, что применение античастиц не является обязательным, так как разница в знаке заряда мало влияет на результаты физических исследований. Отличие в знаке заряда больше влияет на конструкцию коллайдера В кольцевых коллайдерах использование частиц и античастиц позволяет осуществлять их движение по одному каналу (трубе), как это делается, например, в коллайдере Теватрон. В тоже время в коллайдере БАК сталкиваются только протоны или ионы свинца одного знака. Для этого, однако, потребовалась проводка сталкивающихся частиц по двум разным каналам.
    Электрон-позитронные линейные коллайдеры имеют определенные преимущества перед адронными коллайдерами в части анализа результатов, получаемых в экспериментах. В тоже время, из-за отсутствия накопительных колец, в них труднее получать высокую светимость.
    Сравнение характера столкновений в электрон-позитронных и адронных коллайдерах рассматриваются в следующих разделах.

    1.4 . Краткие сведения о физике элементарных частиц

    В настоящее время основу физики элементарных частиц представляет «Стандартная модель» - квантово-механическая теория локальных полей. В ней рассматриваются поля каждого типа элементарных частиц (кроме гравитационного поля). Колебания таких полей переносят энергию и импульс с одного места пространства в другое. Согласно квантовой механике волны собираются в пакеты, или кванты, которые наблюдаются в лаборатории в виде элементарных частиц.
    В «Стандартной модели» (Табл.3.1) фермионы это - элементарные частицы, из которых складывается вещество Они представлены двумя видами полей: полями лептонов (лептон от греческого «leptos» - легкий) и полями кварков («quark» - фундаментальная частица в стандартной модели). Фермионы разбиты на три поколения. Каждый член следующего поколения имеет массу большую, чем соответствующая частица предыдущего. Все обычные атомы содержат частицы первого поколения. Второе и третье поколения заряженных частиц не присутствуют в обычной материи и наблюдаются только в условиях очень высоких энергий.


    Таблица № 3.1. Стандартная модель

    Квантами лептонных полей являются: электроны, более тяжелые частицы - мюоны, таоны, и электрически нейтральные частицы, известные как нейтрино.
    Квантами полей кварков являются: верхний, нижний, очаровательный, странный, истинный и прелестный кварки. Некоторые из кварков связаны вместе внутри протонов и нейтронов, составляющих ядра обычных атомов. Составные части ядра: протоны и нейтроны тоже являются фермионами.
    Силы взаимодействия между частицами, обусловлены процессами обмена фотонами, W + , W - и Z 0 частицами, а также восемью типами глюонов (gluon), Переносчики взаимодействий получили название калибровочных бозонов .
    Электромагнитное взаимодействие имеет место между заряженными частицами. Под действием электромагнитных сил не происходит изменения частиц, они только притягиваются или отталкиваются. Переносчиком взаимодействия являются фотоны. Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулах и кристаллах.
    Сильному взаимодействию подвержены кварки. Оно связывает их вместе, образуя протоны, нейтроны и другие комбинированные частицы. Сильное взаимодействие влияет на связь между протонами и нейтронами в атоме. Переносчиками этого возбуждения являются глюоны. Это самое сильное взаимодействие в природе. Оно является преобладающим видом взаимодействия в ядерной физике высоких энергий. Взаимодействие ограничивается весьма короткими расстояниями.
    Слабое взаимодействие имеет место между кварками и лептонами. Наиболее известный эффект слабого взаимодействия - видоизменение кварков, которое в свою. очередь, заставляет нейтрон распадаться на протон, электрон и анти-нейтрино.
    Переносчиками возбуждения являются W + , W - и Z 0 бозоны. Слабое взаимодействие, проявляется при бета-распаде радиоактивных ядер, имеет очень малую дальность.
    Четвертой силой взаимодействия является сила гравитации. В квантовой теории предполагается, что переносчиком гравитационного взаимодействия является гравитон. Гравитон - частица, не имеющая массы. Она обладает спином, равным 2.
    Гравитационное взаимодействие универсально. В нем участвуют все частицы. Это взаимодействие является самым слабым. Оно связывает части земного шара, объединяет Солнце и планеты в Солнечную систему, связывает звезды в галактиках, определяет крупномасштабные события Вселенной .
    . Гравитационное поле описывалось Общей теорией относительности Эйнштейна. В первой половине ХХ века предпринимались многочисленные попытки создания единой теории фундаментальных взаимодействий, включающей гравитацию. Однако ни одной полностью удовлетворительной модели пока предложено не было. Это, в частности, связано с тем, что общая теория относительности и теории, описывающие другие взаимодействия различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, в то время как другие поля являются материей . Их объединения пока не удалось достичь также из-за трудностей создания квантовой теории гравитации. В настоящее время для объединения фундаментальных взаимодействий используются различные подходы: теория струн , петлевая квантовая гравитация , а также М-теория .
    Стандартная Модель предполагает существование еще одного поля, которое практически неотделимо от пустого пространства и не совпадает с гравитационным полем. Его принято называть полем Хиггса. Считается, что все пространство заполнено этим полем и что все фундаментальные частицы (лептоны, кварки и калибровочные бозоны) приобретают массу в результате взаимодействия с полем Хиггса.
    Квантами этого поля являются бозоны Хиггса. Бозон Хиггса теоретически предсказан в 1964 году шотландским физиком П. Хиггсом .
    Бозон Хиггса — последняя до сих пор не найденная частица «Стандартной модели».
    Эта частица так важна, что нобелевский лауреат Леон Ледерман назвал её «частицей-бога» . Предполагается наличие четырех или даже пяти бозонов Хиггса, которые являются скалярными частицами, т.е. имеют нулевой спин. О пяти разновидностей бозона Хиггса с разными зарядами (три нейтральных, один положительный и один отрицательный) сообщается в работе .
    Долгое время предполагалось, что верхняя граница массы бозона Хиггса менее 1 ТэВ.
    Однако в 2004 г. на коллайдере Теватрон при обработке данных эксперимента, полученных по определению массы t - кварка, значение верхней границы массы бозона Хиггса было ограничено 251 ГэВ.
    Исследования по обнаружению бозона Хиггса проводились и продолжаются на ряде других коллайдерах. Широкий цикл исследований по нахождению бозона Хиггса был осуществлен на коллайдере LEP c энергией в центре масс 208 ГэВ, но успехом не увенчался.
    Ожидается, что экспериментальное подтверждение наличия бозонов Хиггса и уточнение их
    характеристик будет выполнено на коллайдере БАК.
    Как видно из Табл. 2.1 на нескольких коллайдерах ведутся исследования состояния материи, называемой кварк-глюонной плазмой, где цветные кварки и глюоны, как свободные частицы, образуют непрерывную среду, называемую хромоплазмой. Проводимость хромоплазмы аналогична электропроводимости, возникающей в электрон-ионной плазме . По современным представлениям кварк-глюонная плазма образуется при высоких температурах и/или больших плотностях адронной материи. Предполагают, что в естественных условиях эта плазма существовала в первые 10 -5 с после Большого взрыва. Эти условия могут присутствовать в центре нейтронных звезд. Переход в состояние кварк-глюконной плазмы может происходить при температуре, соответствующей кинетической энергии ~200 МэВ.
    Первые экспериментальные результаты, касающиеся кварк-глюонной плазмы были получены в в 1990 г. в ЦЕРН на Супер протонном синхронтроне, СПС (SPS). Затем в 2000 г., также в ЦЕРН было объявлено об открытия этого «нового состояния материи». Дальнейшие исследования проводились на коллайдере RHIC. Считается, что для образования кварк-глюонной плазмы необходима энергия ~3,5 ТэВ. В 2010 г было сообщено, что по предварительным данным температура плазмы составила 3,5 -4 триллиона градусов Цельсия. Работы велись при столкновении в RHIC ионов свинца и золота. Коллайдер работал при энергии в центре масс ~ 33 ТэВ .
    В ноябре 2010 г работа с ионами свинца и получением кварк-глюонной плазмы началиcь на Большом адроном коллайдере LHC. В течение первой недели была получена кварк-глюонная плазма с температурой в десятки триллионов градусов .
    Одним из важных направлений физики элементарных частиц является изучение вопросов симметрии. Так на коллайдерах PEP II и KEK-B, которые, в частности являются фабриками В - мезонов исследуются вопросы нарушения СP cимметрии (С - зарядная симметрия, трансформация частицы в античастицу). P - пространственная симметрия, зеркальное отображение системы . Сначала физики полагали, что при проведении симметричного преобразования любого взаимодействия между частицами результат будет неизменен - симметрия сохранится. Однако экспериментальные исследования показали, что при слабых взаимодействиях происходит нарушение как Р-, так и С- симметрии . Изучение вопросов нарушения симметрии на коллайдерах PEP II и KEK-B эффективно благодаря их высокой светимости.
    В ближайшее время изучение вопросов симметрии будет проводиться при очень высоких энергиях коллайдера БАК, что позволит измерить гораздо большее число распадов В-мезонов с нарушением СР симметрии, чем в предыдущих экспериментах. Стандартная модель пройдет еще одну доскональную проверку, и появится объяснение того, почему природа предпочла вещество антивеществу .
    Основная цель повышения энергии ускоренных частиц состоит в том, что это дает возможность изучать взаимодействие частиц на все меньших расстояниях и за более короткие времена. Удается изучать внутреннюю структуру элементарных частиц, обладающих крайне малыми размерами
    Не предвидится никаких оснований полагать, что квантовая теория поля не работает вплоть до масштабов, соизмеримых с длиной Планка где начинают проявляться квантовые эффекты гравитации и где структура материи соответствует расстояниям порядка 10 -33 см и массе планка m p ≈ ћc/G) 1/2 ≈ 1.2×10 19 ГэВ/c 2 , т. е энергии в центре масс ≈10 19 ГэВ (ћ - постоянная Дирака, с -скорость света, G- гравитационная постоянная)
    Наименьший доступный масштаб изучаемых явлений при столкновении частиц с импульсами p (энергия E = (p 2 c 2 + m 2 c 4) 1/2 определяется длиной волны l = h/p = hc/E.
    Для решения данной задачи и используются соударения элементарных частиц в коллайдерах.
    Сотни экспериментов уже позволили проникнуть в структуру материи, которая характеризуется расстояниями 10 -18 см . Конечно, создание коллайдеров на энергию в центре масс ≈ 10 7 ТэВ для реализации расстояний в 10 -33 см не представляется возможным.

    1.5 . Сравнение адронных и лептонных коллайдеров

    Представляет интерес рассмотреть некоторые преимущества и недостатки адронных и электрон - позитронных коллайдеров.
    Адроны: протоны и антипротоны являются составными частицами, состоящими из трех кварков (двух u-кварков с электрическим зарядом +2/3 и одного d-кварка с зарядом -1/3, которые скреплены вместе глюонным полем (смотри также Табл.3.1 и ) Однако, если протон летит со скоростью очень близкой к скорости света, он оказывается заполненным в основном глюонами, а кварков и антикварков в нём содержится заметно меньше. Протоны и антипротоны в таких условиях выглядят практически одинаково, и поэтому нет особой разницы, сталкиваются ли протоны с протонами или протоны с антипротонами. Глюонное поле в нём перестает быть просто связывающей силой и материализуется в виде потока частиц — глюонов, — которые летят рядом с кварками. Быстро летящий протон состоит из перемешанных друг в друге глюонных, кварковых и даже антикварковых «облаков» — партонных плотностей.
    Когда два протона сталкиваются лоб в лоб, то один кварк из одного протона сталкивается с кварком из встречного протона, а остальные партоны просто пролетают мимо. При столкновении партоны получают сильный «удар», выбивающий их из родительских протонов. Однако глюонное поле обладает конфайнментом - явлении, состоящем в невозможности получения кварков в свободном состоянии. В экспериментах наблюдаются только агрегаты кварков, состоящие из двух мезонов или трёх кварков (барионы). Происходит адронизация — энергия удара тратится на рождение многочисленных адронов. В этом процессе партоны - «наблюдатели» уже принимают самое активное участие. Можно хорошо рассчитать процессы с отдельными кварками или глюонами, но точно описать адронизацию пока не удается. В связи с адронизацией протон-протонное столкновение сильно отличается от столкновения лептонов (например электрон-позитрон). Процесс анализа p - p + столкновений весьма сложен.
    Связь между теорией и экспериментом при адронных столкновениях не столь непосредственна, как в электрон-позитронных столкновениях. В экспериментах на адронных коллайдерах более сложно определить свойства новых частиц.
    В отличие от протона, электрон и позитрон - элементарные частицы, и энергия, выделяемая при их столкновениях, определяется с высокой точностью. Электрон- позитронные коллайдеры позволяют легче определять так же другие характеристики, открываемых частиц .
    Построенные адронные коллайдеры обладают очень большой энергией в центре масс. Однако далеко не вся эта энергия может быть использована на рождение новых частиц. Так для БАК из полной энергии 14 ТэВ полезно используется только энергия в 2 ТэВ. В случае электрон-позитронных ускорителей практически вся энергия оказывается полезной . Таким образом, при одинаковой энергии в центре масс электрон-позитронные коллайдеры имеют 5 -10 кратное преимущество перед адронными коллайдерами .
    Характеризуя электрон-позитронные линейные коллайдеры следует отметить, что частота повторения соударений встречных сгустков мала по сравнению с кольцевыми электрон- позитронными коллайдерами. Следует еще раз отметить, что основной недостаток линейных коллайдеров состоит в том, что каждый сгусток электронов и позитронов используется только один раз.
    Вблизи плотного потока заряженных частиц электромагнитное поле, ими возбуждаемое очень велико. Излучение в этом поле приводит к большим потерям энергии сталкивающихся частиц и увеличивает уровень шума. Для его ослабления пучки растягивают в одном из поперечных направлений .
    Благодаря малому эмиттансу пучков и очень сильной их фокусировке, в линейных коллайдерах надеются получить светимость в центре масс, равную ((2-6) ×10 34 см -2 с -1 , не уступающую светимости кольцевых коллайдеров.

    Литература к Введению и Главе 1

    Properties of an intersecting beam accelerating system”// Kerst D. W./ CERN Symposium, v. I, Gen., 1956, p. 36 http://cdsweb.cern.ch/record/1241555/files/p36.pdf

    «Ускорители и встречные пучки» // Г.И. Будкер / В кн.: Труды VII Международной конференции по ускорителям заряженных частиц высоких энергий, т. 1, Ер., 1970, с. 33; Встречные пучки. Шестое Всесоюзное совещание по ускорителям заряженных частиц (Дубна, 1978), Дубна, 1978, с. 13; X Международная конференция по ускорителям заряженных частиц высоких энергий (Протвино, 1977), т. 1, Серпухов, 1977,.

    «Ускорители на встречных пучках» // В. П. Дмитриевский./ Большая советская энциклопедия http://slovari.yandex.ru/~книги/БСЭ/Ускорители%20на%20встречных%20пучках .

    « Физика хиггсовского бозона на будущих фотонных коллайдерах»// И.П.Иванов/ http://hnature.web.ru/db/msg.html?mid=1181352

    « Темная энергия вселенной» // В. Лукин, Е. Михеева /«Вокруг света» № 9 (2816). Сентябрь 2008.

    «Поиски частиц темной энергии»// В.А.Рябов и др./»Успехи физических наук» Том 1788,№11 с.1129-1161

    “CLIC 2008 PARAMETERS”// H. Braun et all / CLIC-Note-764

    “Design Study of the CLIC Injector and Booster Linacs With the 2007 Beam Parameters”// A. Ferrari et al./ CLIC - Note -737

    ”A Very Large Lepton Collider in the WLHC tunnel”//T.Sen and J.Norem /www.capp. ill.edu/workshops//opem/References/sen.pdf.

    “Эксперимент”// Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин / Web-публикация на основе учебного пособия Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин. "Частицы и ядра. Эксперимент", М.: Издательство МГУ, 2005. http://nuclphys.sirp.msu.ru /experiment/

    “Коллайдер” // Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин / http://nuclphys.sirp.msu.ru/experiment/accelerators/collider.htm .

    “ LHC Machine”//L. Evans and P.Bryant (editirs)/ Published by Institute of Physics Publishing and SISSA, 2008 JINST 3 SO8001

    “Физика на Большом адроном коллайдере”/ / ”Успехи Физических Наук”, Том179, №6. Июнь 2009 г., с.571-579 (устный выпуск журнала «Успехи физических наук»)

    « Единая физика к 2050» // С. Вайнберг, перевод А. Крашеницы/ http://www.scientifisic.ru/journal/weinberg/weinberg,html .

    « Эксперименты на адронных коллайдерах» http://elementy.ru/LHC/experiments

    «Физика ядра и элементарных частиц. Элементарные частицы» //В. Каланов/ http://znaniya-sila.narod.ru/phisics/phisics_atom_02.htm

    «Четыре основных вида сил в природе»// Ч.Киттель, У.Найт, М. Рудерман/ Берклеевский Курс Физики. Том 1. Механика, стр.456

    «Основы физики элементарных частиц. Строение материи»// http://physics03.narod.ru/Interes/Doclad/bak3.htm

    «Фундаментальные взаимодействия»// http://ru.wikipedia.org/wiki/Фундаментальные_взаимодействия

    «За гранью БАК: будущие коллайдеры» // Д. Борн/ http://www.3dnews.ru/news/za_granu_bak_budushie_kollaideri/

    «Грядущие революции в фундаментальной физике» //Дэвид Гросс/ http://elementy.ru/lib/430177

    «Петлевая квантовая гравитация» http://ru.wikipedia.org/wiki

    “Ученые увеличили число частиц бога до 5» // Lenta.ru. http://lenta.ru/news/2010/06/15/boson/

    «Кварк-глюонная плазма» // http://сайт/enc/e036.htm

    “ Hunting the Quark Gluon Plasma”// BNL-73847-2005 Final Report / www.bnl.gov/npp/docs/Hunting%20the%20QGP.pdf Физика

    «Эксперимент LHCb»//НИЯФ МГУ,2004 / http://physics03.narod.ru/Interes/Doclad/antiv.htm

    «Движение заряженных частиц в электрических и магнитных полях»// Л.А. Арцимович и С.Ю. Лукьянов /Книга. Издательство «Наука». Москва 1972, стр.171-177

    «Коллайдер нового поколения» //Б. Бэриш, Н. Уоке http:// physics03.narod.ru/Interes/Doclad/bak13.htmр, Х. Ямамото. Перевод: А.А. Сорокин Специальный репортаж в журнале "В мире науки" № 5 за 2008 год Коллайдер нового поколения.

    ”Accelerator Physics and Technologies for Linear Collider. Lecture I”// S.D..Holmes/ Hep.uchicago.edu/~kwangie/LectureNotes_Holmes.pdf

    «Фотонные коллайдеры и исследование фундаментальных взаимодействий»// И. Ф. Гинзбург/ http://www-fima-ru.narod.ru/

    “Muon Collider Progress”// R.B. Palmer

    /www.cern.ch/accelconf/e98/PAPERS/THZ04A.PDF THZ04A.PDF

    “ MULTI-MODE SLED-II PULSE COMPRESSOR”// S.V. Kuzikov et all /Proceedings of LINAC 2004, THP28 pp. 660-662

    “ A Multy-Moded RF Delay Linear Distribution System” //S.G. Tantawi et all / SLAC-PUB-9125

    “RF Breakdown Studies in Room Temperature Electron Linac Structures / Gregory A. Loew and W. Wang // Slac-PUB-4647, May 1988.

    “ Gradient Limitation For High-frequency Accelerators”/ Döbert // Proceedings of Linac 2004, Lübeck, Germany, WE 101

    “ The Physics & Technology of a 0,5 to 1,0 TeV Linear colliders”.// Stuart Tovey - Wollongang - 2004./ Интернет, SNT- Wollongang, ppt.

    “4 XFEL accelerator” //

    “The European X-Ray Free-Electron Laser. Technical design report” // http://xfel.desy.de/localfs.Explorer_read?Current.Path =afs/desy.de/group/xfel/wof/EPT/TRD/XFEL-TRD-final.pdf.

    ВВЕДЕНИЕ

    Ускорители на встречных пучках, получили название коллайдеров (от английского слова to collide - сталкиваться). Они являются основными инструментами экспериментального изучения процессов физики элементарных частиц в области сверхвысоких энергий Величина энергии получаемая при столкновениях пучков не может быть достигнута в обычных ускорителях с неподвижной мишенью.
    Разработка и сооружение установок со встречными пучками была начата в 1956 г. в лабораториях России (СССР) и за рубежом после опубликования предложения об использовании коллайдеров американского физика У. Керста .
    В работе Г.И. Будкера содержится замечание, что впервые идею о применении встречных пучков высказал Я.Б. Зельдович (СССР), правда в пессимистическом тоне из-за малой плотности частиц в сталкивающихся пучках.
    Первоначально создавались электрон-электронные и электрон-позитронные коллайдеры (1956-1966 гг.) Предложение об их разработке принадлежит Г.И. Будкеру (СССР) . Первые коллайдеры были созданы в Институте ядерной физики (СССР Россия), в Стэнфордском центре линейных ускорителей (США), в лаборатории линейных ускорителей во Фраскати (Италия), в лаборатории Орсэ (Франция). Несколько позже были запущены адронные коллайдеры (адрон - от греческого слова «adros», означающее «крупный, массивный»), в том числе коллайдеры с ионами. Коллайдеры с протон-протонными и протон-электронными пучками были созданы в ЦЕРН (Швейцария), Германии и Великобритании (смотри Табл.1а-В и Табл. 1b-В).
    Проблема увеличения светимости сталкивающихся пучков в кольцевых коллайдерах была решена, благодаря аккумуляции ускоряемых частиц в накопительных кольцах. В линейных коллайдерах большая плотность взаимодействующих пучков обеспечивается ускорителями с сильноточными пучками, которые обладают малым эмиттансом и малым энергетическим разбросом, а также при использовании синхротронного излучения в демпфирующих кольцах и ионизационного охлаждения.
    Первый электрон-позитронный коллайдер ВЭПП-2, изготовленный в ИЯФ им. Г.И. Будкера (Россия), был кольцевым. В качестве ускорителя использовался безжелезный синхротрон, пучок которого инжектировался в накопительное кольцо. Пока единственный линейный электрон-позитронный коллайдер создан на основе ускорителя SLAC. Повышение светимости в нем достигается благодаря использованию демпфирующих колец.
    Появление ускорителей заряженных частиц и коллайдеров с высокой энергией позволило развивать новые теоретические модели физики элементарных частиц, осуществлять экспериментальную проверку «Стандартной модели».
    Физические исследования в области элементарных частиц потребовали существенного увеличения энергии сталкивающихся лептонов и адронов в центре масс (до 1 ТеВ и более). На сооружении коллайдеров в ТэВ-ом диапазоне энергией с конца 80-х годов прошлого столетия сконцентрировано внимание мирового содружества ученых. В настоящее время эти работы стали интернациональными.
    Физики надеются, что экстремально высокие энергии позволят ответить на ряд фундаментальных вопросов науки: как частицы приобретают массу? Что представляет собой структура пространство - время? Что создает темную энергию и темную материю космоса? . Предполагается в частности , что на коллайдерах станет возможным проведение точных измерений характеристик Хиггс бозона, ответственного за возникновения массы элементарных частиц и установление его поля. На них также окажется возможным исследование вопросов суперсимметрии.

    Таблица № 1а-В. Перечень основных построенных коллайдеров

    Наименование
    коллайдера
    ХАРАКТЕРИСТИКИ УСКОРИТЕЛЕЙ
    Центр, город, страна Годы работы Тип частиц Максим.
    энергия
    пучка, ГэВ
    Светимость
    10 30 см -2 с -1
    Периметр
    (длина),
    км
    ВЭПП-2000 ИЯФ,
    Россия
    2006 е + е − 1 100 0,024
    ВЭПП-4М ИЯФ,
    Россия
    1994 е + е − 6 20 0,366
    ВЕРС Китай 1989-2005 е + е − 2,2 5 на 1,55 ГэВ 12,6 на 1,843 ГэВ 0,2404
    ВЕРС-II Китай c 2007 е + е − 1,89 1000 0,23753
    DAFNE Frascati, Италия 1999-2008 е + е − 0,7 150 0,098
    CESR Cornell 1979- 2002 е + е − 6 1280 на 5,3 ГэВ 0,768
    CESR-C Cornell с 2002 е + е − 6 60 на 1,9 ГэВ 0,768

    KEK, Япония

    е + е − е − : 8
    е + :3,5
    SLAC, е + е − е − : 7-12
    е + : 2,5- 4
    СЛК SLAC, е + е − 6 Линейный
    3
    HERA DESY, Германия c 1992

    e 30
    p 920

    75 6,336
    Tevatron Fermilab,
    США
    c 1987 p + p − 980 171 6,28
    RHIC Brookhaven,
    США

    pp,
    Au-Au,
    Cu-Cu,
    d-Au

    10;
    0,0015;
    0,02;
    0,07

    3,834
    Большой э/п коллайдер БЭПК (LEP) CERN е + е − 24 на Z o

    100 при > 90 ГэВ

    Большой адронный коллайдер БАК (LHC) CERN pp, 3500
    (план 7000)
    10000

    (В 2011 году достигнуто 0,001)

    26,659
    Pb-Pb 1380/n
    (план 2760)

    Физики почти уверены, что революционные открытия с использованием коллайдеров будут сделаны в пределах следующие десять - пятнадцать лет.
    Продолжение разработки новых электрон-позитронных линейных коллайдеров, в том числе фотонных и мюонных, происходит во время, когда начал работать Большой кольцевой адронный коллайдер (БАК, LHC). На этом коллайдере в первую очередь будут решаться упомянутые выше задачи физике элементарных частиц и вопросы мироздания.

    Таблица № 1b -В. Перечень некоторых разрабатываемых линейных коллайдеров

    В коллайдерах в качестве ускорителей нашли применение синхротроны и линейные резонансные ускорители (ЛРУ). Даже в кольцевых колайдерах, основанных на синхротронах, в качестве инжекторов синхротронов обязательно используются ЛРУ. Ускорение частиц в синхротронах происходит в резонаторных системах, являющихся фрагментами ВЧ систем линейных ускорителей. ЛРУ являются основой линейных лептонных коллайдеров. Новые перспективные методы ускорения частиц в коллайдерах, такие как кильватерное ускорение в плазме, также требуют использования ЛРУ, как возбудителей плазмы.
    Разработка новых линейных высокоэнергетичных электрон-позитронных коллайдеров заставила провести широкие теоретические и экспериментальные исследования в части выбора диапазона рабочих частот, используемых в линейных резонансных ускорителях. электронов (ЛУЭ) и протонов (ЛУП). Стремление сократить длину ускорителей потребовало разработки новых ускоряющих структур, работающих в С -,Х -, K u - и К диапазонах длин волн.
    При создании новых коллайдеров.ТеВ - диапазона энергий были решены многие вопросы технологии линейных резонансных ускорителей. Созданы ВЧ ускоряющие структуры, перечисленных выше диапазонов, работающие при существенно более высоких частотах, чем использовавшиеся ранее. Обеспечивается надежная работа «теплых» структур с ускоряющим градиентом в 100 МВ/м на частотах до 12 ГГц.(K u - диапазон).
    Разработаны высокомощные ВЧ источники - однолучевые клистроны Х диапазона.
    Усовершенствованы также другие элементы трактов ВЧ питания, например, устройства компрессии ВЧ импульса или задержанного распределения . Эта техника позволяет использовать один клистрон для питания нескольких ускоряющих секций.
    Разработаны многолучевые клистроны L диапазона на импульсную мощность 10 МВт и длительность ВЧ импульса 1,6 мс.
    В тоже время необходимо отметить, что первоначально намеченные цели создания коллайдеров Т - диапазона энергий, используя линейные ускорители K диапазона (частота 30 ГГц), реализовать не удалось. Идея использования сверхвысоких частот основывалась на том, что электрическая прочность структуры почти линейно повышается с увеличением частоты . Широкие теоретические и экспериментальные исследования Нового Линейного Коллайдера (NLC) в США, Глобального линейного коллайдера (GLC) в Японии, Японского линейного коллайдера (JLC) и компактного линейного коллайдера (КЛК, CLIC) в Швейцарии показали однако, что, по крайней мере при существующей технологии, отсутствует заметное увеличение предельного градиента электрического поля на частотах колебаний свыше 12 ГГц. С этим и был связан переход от частоты 30 ГГц на частоту 12 ГГц в коллайдере CLIC.
    Желание увеличить надежность работы и некоторые другие причины привели к тому, что разработка Международного (глобального) линейного электрон-позитронного коллайдера (Internation Linear Collider, ILC) стала основываться на использовании в нем L- диапазона частот и сверхпроводящих ускоряющих структур.
    Другой проблемой, которую пришлось решать, была связана с поперечными диодными модами высокого порядка, наводимыми электронными или позитронными сгустками частиц в ускоряющих структурах и электронопроводах. Появление этих полей особенно нежелательно при больших длинах электронных трактов. Высшие моды поперечных дипольных полей приводят к увеличению поперечных размеров пучка (вплоть до его развала), увеличению эмиттанса и энергетического разброса. Моды, вызывающие нестабильность пучков, особенно неприятны при высоких частотах, но должны обязательно подавляться также и в L - диапазоне.
    Особое место занимают вопросы, связанные с проектом Компактного Линейного Коллайдера, КЛК (Compact Linear Collider, CLIC). В отличие от обычных схем в CLIC используется принцип двух-лучевого ускорения . Питание основных многосекционных ускоряющих структур ЛУ электронов и позитронов осуществляется не клистронами, а ВЧ энергией, которая генерируется в де-ускорителях при торможении релятивистского пучка ускорителей-возбудителей.
    Как указывалось выше, создание ЛУЭ для коллайдеров стимулировало разработку новых клистронов большой мощности, в том числе, многолучевых в разных частотных диапазонах..
    Следует отметить, что разработки ЛУЭ для коллайдеров нашли применение в лазерах на свободных электронах, при создания установок неразрушающего контроля, для терапии и диагностики злокачественных образований. ВЧ техника, разработанная для Международного линейного коллайдера, и связанная с ЛУЭ, используется при проектировании Европейского рентгеновского лазера на свободных электронах, сооружаемого в ДЭЗИ .
    Основные вопросы, относящиеся к ЛРУ, решались при сооружении и разработке линейных коллайдеров электронов и позитронов. В основном они освещены в Главе 3 «Линейные электрон-позитронные и фотонные коллайдеры высокой энергии». Более кратко, вопросы, относящиеся к ЛРУ - инжекторам и системам ускорения частиц в синхротронах изложены в Главе 2 «КОЛЬЦЕВЫЕ КОЛЛАЙДЕРЫ ВЫСОКОЙ ЭНЕРГИИ», где описываются Большой электрон-позитронный коллайдер (БЭПК) и большой адронноый коллайдер (БАК).
    Материал, связанный с кильватерным методом ускорения, приведен в Главе 4 «КИЛЬВАТЕРНЫЙ МЕТОД УСКОРЕНИЯ».
    Некоторые сведения о ЛРУ и фрагментах ВЧ систем ЛРУ, которые используются в фотонных и мюонных ускорителях даны в разделе 2.3 «МЮОННЫЕ КОЛЛАЙДЕРЫ». и в разделе 3.4 «ФОТОННЫЕ КОЛЛАЙДЕРЫ». Следует отметить, однако, что в опубликованной литературе пока отсутствуют детали ЛРУ, проектируемые для мюонных коллайдеров.
    Предполагается, что читатель знаком с теорией и техникой резонансных линейных ускорителей.
    Для удобства пользования книгой в Главе 1 кратко рассматриваются некоторые вопросы теории коллайдеров, что даст возможность работать с книгой, меньше прибегая к другим источникам информации, содержащейся в многочисленных монографиях, статьях и докладах, ссылки на которые приведены в конце этой Главы.

    Кандидат физико-математических наук Е. ЛОЗОВСКАЯ.

    До какого предела можно раздробить крупицу вещества, например песчинку? Из чего состоит окружающий нас мир? Как, когда и откуда появились звёзды, планеты и всё остальное? Эти вопросы давно не дают человеку покоя. И чем глубже проникают учёные в тайны природы, тем сложнее становятся научные эксперименты.

    Наука и жизнь // Иллюстрации

    Наука и жизнь // Иллюстрации

    Наука и жизнь // Иллюстрации

    Наука и жизнь // Иллюстрации

    Наука и жизнь // Иллюстрации

    Наверное, каждый из нас хотя бы раз пытался разобрать игрушку, чтобы посмотреть, что у нее внутри. Подобное любопытство движет и учёными, которые стремятся выяснить устройство материи вплоть до самых элементарных кирпичиков. А чтобы проводить такие исследования, проектируют и строят специальные экспериментальные установки - ускорители.

    На границе Швейцарии и Франции, глубоко под землёй, проходит огромный кольцевой тоннель. Его длина - без малого 27 км. Когда-то, еще в 80-е годы XX века, этот тоннель прорыли для того, чтобы исследователи из ЦЕРНа - Европейского центра ядерных исследований - могли разгонять в нём до огромных скоростей электроны и позитроны. Теперь в этом самом тоннеле создан новый ускоритель, который получил название «Большой адронный коллайдер».

    Что это такое?

    Слово «коллайдер» происходит от английского collide - сталкиваться. В коллайдере два пучка частиц летят навстречу друг другу и при столкновении энергии пучков складываются. В обычных ускорителях пучок ударяет по неподвижной мишени и энергия такого соударения гораздо меньше.

    Почему коллайдер называется адронным? Среди элементарных частиц есть семейство адронов. К нему относятся протоны и нейтроны, из которых состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов - то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склеенных» глюонами.

    Разогнать в адронном коллайдере можно далеко не всякий адрон, а только тот, что имеет электрический заряд. Например, нейтрон - частица нейтральная, что видно из названия, и электромагнитное поле на него не действует. Поэтому главными объектами эксперимента станут протоны (ядра атомов водорода) и тяжёлые ядра свинца.

    На сегодняшний день Большой адронный коллайдер - самый мощный в мире. С его помощью физики надеются получить протоны с энергией 7ТэВ (тераэлектронвольт, то есть 10 12 эВ). Это значит, что при столкновении выделится суммарная энергия 14 ТэВ. Чтобы достичь такой энергии, протоны должны лететь почти со световой скоростью (если точнее, то со скоростью, которая составляет 0,999999991 от скорости света). При этом каждый протон за одну секунду пролетит по 27-километровому кольцу 11 000 раз! Пучок протонов может летать внутри коллайдера 10часов. За это время он преодолеет более 10 миллиардов километров - расстояние до планеты Нептун и обратно.

    Как он устроен?

    Вдоль всего тоннеля установлены сверхпроводящие магниты. Частицы разгоняются в электрическом поле, а магнитное поле направляет их по круговой траектории - иначе они врежутся в стенку. Поскольку магниты не простые, а сверхпроводящие (только они позволяют достичь требуемых величин магнитного поля), то для работы их необходимо охладить до температуры 1,9 К. Это ниже, чем температура в космическом пространстве (2,7 К). Чтобы получить космический холод в земных условиях, в охлаждающие системы коллайдера требуется залить 120 т жидкого гелия.

    Два пучка движутся во встречных направлениях по двум кольцевым трубам. Ничто не должно мешать движению частиц, поэтому воздух из труб откачан до глубокого вакуума. Столкновения могут происходить только в четырёх точках, где трубы пересекаются. Столкновение двух частиц «лоб в лоб» - событие довольно редкое. Когда пересекаются два пучка по 100 миллиардов частиц в каждом, сталкиваются всего 20 частиц. Но поскольку пучки пересекаются примерно 30 миллионов раз в секунду, ежесекундно может происходить 600 миллионов столкновений.

    Зачем он нужен?

    Взаимодействие и превращения известных на сегодняшний день элементарных частиц неплохо описывает теория, называемая Стандартной моделью. Но на некоторые вопросы эта теория ответить не может. Например, она не может объяснить, почему одни частицы имеют большую массу, а другие не имеют её вовсе. Есть гипотеза, что за массу отвечает особая частица - бозон Хиггса. Её-то и надеются обнаружить физики при столкновении протонных пучков с большой энергией. Возможно, что Большой адронный коллайдер поможет нам понять, что такое тёмная материя и тёмная энергия, на которые, как считают астрофизики, приходится более 95% всей материи во Вселенной.

    В столкновениях пучков тяжёлых ядер физики надеются создать условия Большого взрыва - отправной точки развития Вселенной. Считается, что в первые мгновения после взрыва существовала лишь кварк-глюонная плазма. По прошествии одной сотой доли микросекунды кварки объединились по три и образовали протоны и нейтроны. До сих пор ни в одном эксперименте не удалось «расколоть» протон и выбить из него отдельные кварки. Но как знать, быть может, Большой адронный коллайдер справится с этой задачей - ведь при столкновении ядер свинца предполагается достичь температуры, в сто тысяч раз превышающей температуру в центре Солнца.

    Как увидеть невидимое?

    К сожалению, в распоряжении учёных нет прибора, который мог бы напрямую зарегистрировать, например, кварк-глюонную плазму: через ничтожно короткий промежуток в 10 -23 секунды она исчезнет без следа. О результатах эксперимента приходится судить по «уликам» - следам, оставленным частицами, родившимся в ходе эксперимента. Как шутят физики, это не легче, чем воссоздать облик Чеширского кота по его улыбке.

    О чёрных дырах и «конце света»

    С Большим адронным коллайдером связано множество мифов. Например, говорят о том, что при столкновении частиц с высокой энергией образуется чёрная дыра, в которую может «затянуть» всю нашу планету, и наступит «конец света». На самом деле рекордная для физики элементарных частиц энергия в 14 ТэВ чрезвычайно мала - это две миллионные доли джоуля. Чтобы довести до кипения один литр воды, потребуется энергия более ста миллиардов протон-протонных столкновений. Кроме того, Землю в течение миллиардов лет бомбардируют космические частицы с энергией в миллионы раз большей, чем энергия протонов в ускорителе. И пока ни к каким ужасным последствиям это не привело. Правда, некоторые физики полагают, что чёрные дыры в коллайдере появятся - но микроскопические и очень коротко живущие.

    Энергию измеряют в разных единицах - в джоулях, калориях, киловатт-часах. В международную систему СИ входит только джоуль. Но в физике элементарных частиц для измерения энергии чаще всего используют электронвольт и его производные - КэВ, МэВ, ГэВ, ТэВ. Электронвольт - удобная единица. Она основана на понятном представлении, что одиночный электрон ускоряется разностью потенциалов в 1 вольт и приобретает при этом определенное количество энергии. 1 эВ = 1,6.10 -19 Дж. В электронвольтах измеряют не только энергию, но и массу. Согласно знаменитому уравнению Эйнштейна E=mc 2 , энергия и масса - две стороны одной монеты. Масса может трансформироваться в энергию и наоборот. В коллайдере такие превращения происходят при каждом столкновении.

    То, что вещество состоит из неделимых частиц - атомов, предположил древнегреческий ученый Демокрит (кстати, «атом» в переводе с древнегреческого означает «неделимый»). Но лишь через многие столетия физики доказали, что так оно и есть. Потом обнаружилось, что атом на самом деле разделить можно, - он состоит из электронов и ядра, а ядро - из протонов и нейтронов. Но и они, как выяснилось, не самые мелкие частицы и в свою очередь состоят из кварков. Физики считают, что кварки - предел деления материи и ничего меньше на свете нет. А соединяются кварки между собой с помощью глюонов (от английского glue - клей).

    Физика элементарных частиц изучает самые крошечные объекты в природе. Размер атома равен 10 -10 м, размер атомного ядра - 10 -14 м, размеры протона и нейтрона - 10 -15 м, электроны меньше 10 -18 м, а кварки меньше 10 -19 м. Чтобы сравнить эти числа, представим, что диаметр протона будет равен примерно 10 см. Тогда электроны и кварки окажутся меньше 0,1 мм, а весь атом будет иметь 10 км в поперечнике.

    установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях – для исследования субъядерных процессов и свойств элементарных частиц (см. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ).

    Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.

    Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт – это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ » 1,60219Ч 10 –19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (10 12) электронвольт – на крупнейшем в мире ускорителе.

    Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами – энергией и интенсивностью пучка частиц.

    В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как «обычные», так и криогенные) и сложные системы юстировки и крепления.

    Валошек П. Путешествие в глубь материи. С ускорителем ГЕРА к границам познания . М., 1995

    Найти "УСКОРИТЕЛЬ ЧАСТИЦ " на

    Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

    Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

    Амбициозный проект человечества

    Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

    Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

    Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц - большого электрон-позитронного коллайдера.

    Зачем нужен большой адронный коллайдер

    Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

    Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

    Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

    Бозон Хиггса

    В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

    Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

    А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

    Как он работает

    Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

    Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

    На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

    Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

    Цель оправдывает средства

    Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

    Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию - здравствуйте, пушки и ружья!

    Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

    Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос "зачем нужен большой адронный коллайдер именно сейчас" на самом деле - не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

    Вопросы, на которые не отвечают

    Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает...

    Опасения научных коллег

    Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

    Такой подход напоминает лабораторные опыты юных химиков - всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

    Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере...

    Информационная диктатура

    Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

    Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность - делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

    Вверх