Применение эпр. Основы электронного парамагнитного резонанса. Ядерный магнитный резонанс Электронный магнитный резонанс

Явление электронного парамагнитного резонанса

Если парамагнитный атом поместить в магнитное поле, то каждый его энергоуровень будет расщепляться на количество подуровней равных $2J+1$(количество возможных $m_J)$. Интервал между соседними уровнями при этом равен:

В том случае, если атом в данном состоянии поместить еще в электромагнитную волну , имеющую частоту $\omega $, которая удовлетворит условию:

то под воздействием магнитной компоненты волны в соответствии с правилом отбора будут возникать переходы атома между соседними подуровнями, внутри одного уровня. Такое явление называют электронным парамагнитным резонансом (ЭПР). Первым его отметил Е.К. Завойский в 1944 г. Так как ЭПР связано с резонансом, то переходы появляются только при определенной частоте падающей волны. Такую частоту легко оценить, если использовать выражение (2):

При $g\approx 1$ и типичной индукции магнитного поля, которое используют в условиях лаборатории, $B\approx 1\ Тл$ получают $\nu ={10}^{10}Гц$. Что означает, что частоты локализованы в радиодиапазоне (СВЧ).

При явлении резонанса энергия передается от поля к атому. Кроме того, при переходе атома с высоких подуровней Зеемана на более низкие подуровни, энергия передается от атома к полю. Надо отметить, что в случае теплового равновесия количество атомов имеющих меньшую энергию больше, чем число атомов обладающих большей энергией. Значит, переходы, которые увеличивают энергию атомов, превалируют над переходами в сторону с меньшей энергией. Получается, что парамагнетик поглощает энергию поля в радиодиапазоне и при этом увеличивает свою температуру.

Опыты с явлением электронного парамагнитного резонанса дали возможность, применяя выражение (2), находить один из параметров: $g,B\ или\ {\omega }_{rez}$ по остальным величинам. Так, измеряя с высокой точностью $B$ и ${\omega }_{rez}$ в состоянии резонанса, находят величину фактора Ланде и магнитный момент атома в состоянии с J.

В жидкостях и твердых телах атомы нельзя считать изолированными. Пренебрегать их взаимодействием нельзя. Оно ведет к тому, что интервалы между соседними подуровнями при расщеплении Зеемана являются разными, линии ЭПР имеют конечную ширину.

ЭПР

Итак, явление электронного парамагнитного резонанса состоит в поглощении парамагнетиком микроволнового радиоизлучения за счет переходов между подуровнями расщепления Зеемана. При этом расщепление энергоуровней вызвано воздействием постоянного магнитного поля на магнитные моменты атомов вещества. Магнитные моменты атомов в таком поле ориентируются по полю. Одновременно с эти идет расщепление энергоуровней Зеемана и перераспределение по данным уровням атомов. Заполняемость атомами подуровней оказывается разной.

В состоянии термодинамического равновесия среднее количество атомов ($\left\langle N\right\rangle $), заселяющих данный подуровень можно вычислить, используя формулу Больцмана:

где $\triangle E_{mag}\sim mH$. Подуровни с меньшим магнитным квантовым числом ($m$) имеют больше атомов, как состояния с меньшей потенциальной энергией. Значит, существует преимущественная ориентация магнитных моментов атомов по магнитному полю, которая соответствует намагниченному состоянию парамагнетика. В случае накладывания на парамагнетик переменного магнитного поля с частотой равной (кратной) частоте перехода между подуровнями расщепления Зеемана происходит резонансное поглощение электромагнитных волн. Оно вызвано превышением количества переходов, которые связаны с увеличением магнитного квантового числа на один:

над количеством переходов типа:

Так, из-за резонансного поглощения энергии переменного магнитного поля атомы будут совершать переходы с нижних более заполненных уровней, на верхние уровни. Поглощение пропорционально количеству поглощающих атомов в единице объема.

Если вещество составлено из атомов с одним валентным электроном в состоянии s, имеющих полный магнитный момент равный спиновому магнитному моменту s - электрона, то ЭПР наиболее эффективен.

Особенным парамагнитным резонансом считают резонансное поглощение электромагнитных волн электронами проводимости в металлах. Оно связано со спином электронов и спиновым парамагнетизмом электронного газа в таком веществе. В ферромагнетиках выделяют ферромагнитный резонанс, который связывают с переориентацией электронных моментов в доменах или между ними.

Для изучения электронного парамагнитного резонанса используют радиоспектроскопы. В таких приборах частота ($\omega $) остается неизменной. Изменяют индукцию магнитного поля (B), которое создает электромагнит (рис.1).

Рисунок 1. Электронный парамагнитный резонанс (ЭПР). Автор24 - интернет-биржа студенческих работ

Маленький образец А располагают в объемном резонаторе R, который настроен на длину волны около 3 см. Радиоволны такой длины создаются генератором G. Эти волны через волновод V подводят к резонатору. Часть волн поглощается образцом А, часть из них через волновод попадают в детектор D. При проведении опыта проводят плавное изменение индукции магнитного поля (B), которое создается электромагнитом. Когда величина индукции удовлетворяет условию возникновения резонанса (2) образец начинает интенсивно поглощать волну.

Замечание 1

ЭПР один из самых простых методов радиоспектроскопии.

Примеры

Пример 1

Задание : Каков магнитный момент атома $Ni$ в состоянии ${{}^3F}_4$, если резонансное поглощение энергии возникает при воздействии постоянного поля с магнитной индукцией $B_0$ и переменного магнитного поля с индукцией $B_0$, перпендикулярного к постоянному полю. Частота переменного поля равна $\nu $.

Решение :

Как известно в состоянии резонанса выполняется равенство:

\[\hbar \omega =h\nu =\delta E={\mu }_bgB\left(1.1\right).\]

Из формулы (1.1) найдем фактор Ланде:

Для заданного состояния (${{}^3F}_4$) имеем: $L=3$, $S=1$, $J=4$. Магнитный момент задан при помощи выражения:

\[\mu ={\mu }_bg\sqrt{J(J+1)}=\frac{h\nu }{B_0,\ }\sqrt{20}.\]

Ответ : $\mu =\frac{h\nu }{B_0,\ }\sqrt{20}.$

Пример 2

Задание : Какую полезную информацию можно получить при изучении электронного парамагнитного резонанса?

Решение :

Эмпирически получив резонанс из условий резонанса можно найти одну из величин: фактор Ланде ($g$), индукцию магнитного поля в условиях резонансного поглощения энергии атомом (B), резонансную частоту (${\omega }_{rez}$). При этом B и ${\omega }_{rez}$ можно измерить с высокой точностью. Следовательно, ЭПР дает возможность получить значение $g\ $с высокой точностью и, следовательно, магнитный момент атома для состояния с квантовым числом $J$. Величина квантового числа S определяется по мультиплетности спектров. Если известны $g,\ J,\ S$ легко вычислить $L$. Получается, что становятся известными все квантовые числа атома и спиновый орбитальный и полный магнитный моменты атома.

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР) - резонансное поглощение (излучение) эл--магн. волн радиочастотного диапазона (10 9 -10 12 Гц) парамагнетиками, парамагнетизм к-рых обусловлен электронами. ЭПР - частный случай парамагн. резонанса и более общего явления - магнитного резонанса . Лежит в основе радио-спектроскопич. методов исследования вещества (см. Радио-спектроскопия) . Имеет синоним - электронный спиновый резонанс (ЭСР), подчёркивающий важную роль в явлении спинов электронов. Открыт в 1944 E. К. Завойским (СССР). В качестве парамагн. частиц (в случае конденсированных сред-парамагн. центров), определяющих парамагнетизм, могут выступать электроны, атомы, молекулы, комплексные соединения, дефекты кристалла, если они обладают отличным от нуля магнитным моментом . Источником возникновения магн. момента могут служить неспаренный спин или отличный от нуля суммарный спин (момент кол-ва движения) электронов.

В постоянных магн. полях в результате снятия вырождения у парамагн. частицы возникает система магн. (спиновых) подуровней (см. Зеемана эффект ).Между ними под действием эл--магн. излучения возникают переходы, приводящие к поглощению (излучению) фотона с частотой w ij = | |/.В случае одного электрона в постоянном магн. поле H энергии подуровней = bg bH/ 2 и соответственно частота ЭПР w определяется соотношением

где g - фактор спектроскопич. расщепления; b - магнетон Бора; обычно, H = 10 3 5-10 4 Э; g2.

Экспериментальные методы . Спектрометры ЭПР (радиоспектрометры) работают в сантиметровом и миллиметровом диапазонах длин волн. Используется техника СВЧ-диапазона - генератор (обычно клистрон ),система волноводов и резонаторов с детектирующим устройством. Образец объёмом в неск. мм 3 помещается в область резонатора, где составляющая эл--магн. волны (обычно магнитная), вызывающая переходы, имеет пучность. Резонатор устанавливается между полюсами электромагнита - источника постоянного магн. поля. Резонансное условие типа (1) обычно достигается путём изменения напряжённости поля H при фиксированном значении частоты генератора w. Значение магн. поля при резонансе (H р) в общем случае зависит от ориентации вектора H по отношению к образцу. Сигнал поглощения в виде типичного колоколообраз-ного всплеска или его производной (рис. 1) наблюдается с помощью осциллоскопа или самописца. Наиб. часто исследуется сигнал поглощения, пропорциональный мнимой части динамической магн. восприимчивости (c"") образца. Однако в ряде случаев регистрируется её действительная часть (c"), определяющая долю намагниченности, меняющуюся синфазно с магн. компонентой эл--магн. волны. ЭПР может проявляться в виде микроволновых аналогов оптич. эффектов Фарадея и Коттона - Мутона. Для их регистрации используются волноводы, в конце к-рых устанавливаются спец. антенны, вращающиеся вокруг оси волновода и измеряющие поворот плоскости поляризации или эллиптичность волны, вышедшей из образца. Широкое распространение получили импульсные методы, позволяющие анализировать временные зависимости сигналов ЭПР (т. н. спиновую индукцию и спиновое эхо ).Существует и ряд др. методик для изучения релаксац. процессов, в частности для измерения времён релаксации.


Рис. 1. Электронный парамагнитный резонанс: а - парамагнитная частица со спином S= 1 / 2 , помещён ная во внешнее магнитное поле, имеет два подуровня ( и ), каждый из которых изменяется пропор ционально полю H и зависит от его ориентации по отношению к кристаллографическим осям, задавае мой углами q и f. При резонансных значениях магнит ного поля H р1 и H р2 (углы q 1 , (j 1 и q 2 , j 2) разность становится равной кванту энергии СВЧ -излучения. При этом в спектре поглощения (б )наблю даются характерные всплески вблизи Н р 1 и H p 2 (при ведены сигнал поглощения и его производная) .

Теоретическое описание . Для описания спектра ЭПР используется спиновый гамильтониан ,к-рый для каждого конкретного случая имеет свой вид. В общем случае он может быть представлен в форме, учитывающей все возможные взаимодействия парамагн. частицы (центра):

где описывает взаимодействие с внеш. магн. полем H ; - взаимодействие с внутрикристаллич. электрич. полем; - с магн. моментом собственного и окружающих ядер (сверхтонкое взаимодействие и суперсверхтонкое взаимодействие); - спин-спиновые взаимодействия парамагн. центров между собой (обменное взаимодействие, диполь-дипольное и др.); -взаимодействие с приложенным внеш. давлением P (деформациями); -с внеш. электрич. полем E . Каждое слагаемое, входящее в (2), может состоять из неск. членов, вид к-рых зависит от величины электронных и ядерных спинов и локальной симметрии центра. Часто встречающиеся выражения имеют вид;


где g, a, A, J, С, R -параметры теории, S (i} и I (k ) - i -й и k -й спины электронов и ядра; -единичная матрица. Спиновый гамильтониан (2) обычно относят к одному электронному или электронно-колебат. терму (обычно основному), предполагая, что другие термы отстоят от него на величину, значительно превышающую энергию кванта ЭПР-перехода. Но в ряде случаев, напр. при наличии Яна-Теллера эффекта , возбуждённые термы могут находиться достаточно близко и их необходимо учитывать при описании спектров ЭПР. Тогда для сохранения формализма спинового гамильтониана можно ввести эфф. спин (S эф), связанный с общим числом состояний всех уровней (r )соотношением r = 2S эф +1. Другой подход возможен в рамках метода матрицы возмущения: находится полная матрица оператора возмущения на всех состояниях учитываемых уровней.

Каждое из слагаемых (2) может быть разделено на две части: статическую и динамическую. Статич. часть определяет положение линий в спектре, динамическая - вероятности квантовых переходов, в т. ч. обусловливающих и ре-лаксац. процессы. Энергетич. структуру и волновые ф-ции находят, решая систему ур-ний, соответствующую (2). Число ур-ний равно


где n и p -число фигурирующих в (2) спинов электронов и ядер. Обычно S и I принимают значения от 1 / 2 до 7 / 2 ; п= 1, 2; p= l-50, что указывает на возможность существования секулярных ур-ний высокого порядка. Для преодоления техн. трудностей при диагонализации (2) используют приближённые (аналитические) расчёты. Не все слагаемые (2) одинаковы по величине. Обычно и превосходят др. члены, а и значительно меньше предыдущих. Это позволяет развить теорию возмущений в неск. этапов. Кроме того, разработаны спец. программы для ЭВМ.

Цель феноменологич. теории - нахождение для определ. перехода выражения для H р в ф-ции параметров спинового гамильтониана и углов, характеризующих ориентацию внеш. полей относительно кристаллографич. осей. Сопоставлением (H р) теор с (H р) эксп устанавливается правильность выбора (2) и находятся параметры спинового гамильтониана.

Параметры спинового гамильтониана рассчитываются независимо с помощью методов квантовой механики, исходя из определ. модели парамагн. центра. При этом используют теорию кристаллич. поля, метод молекулярных орбиталей, др. методы квантовой химии и теории твёрдого тела. Осн. трудность этой проблемы состоит в определении электронной энергетич. структуры и волновых ф-ций парамагн. центров. Если эти составляющие ур-ния Шрёдингера найдены, а операторы возмущения известны, задача сводится к вычислению лишь соответствующих матричных элементов. В силу сложности всего комплекса проблем полных расчётов параметров спинового гамильтониана проведено пока мало и не во всех из них достигнуто удовлетворитю согласие с экспериментом. Обычно ограничиваются оценками по порядку величины, используя приближённые ф-лы.

Спектр ЭПР (число линий, их зависимость от ориентации внеш. полей относительно кристаллографич. осей) полностью определяется спиновым гамильтонианом. Так, при наличии лишь зеемановского взаимодействия выражение для энергии имеет вид=g bH + M , где M - квантовое число оператора , принимающее 2S +1 значений: - S, - S+ 1, .... S -1, S. Магн. составляющая эл--магн. волны в данном случае вызывает лишь переходы с правилами отбора DM = b 1, и, в силу эквидистантности уровней, в спектре ЭПР будет наблюдаться одна линия. Нарушение эквидистантности возникает за счёт др. слагаемых спинового гамильтониана. Так, аксиально симметричное слагаемое из , характеризуемое параметром D , добавляет к член , H р оказывается зависящим от M , и в спектре будет наблюдаться 2S линий. Учёт слагаемого AS z I z из приводит к добавке (D ) ст = АМт , где т - квантовое число оператора I z ; H р будет зависеть от m , и в спектре ЭПР будет 2I+ 1 линия. Другие слагаемые из (2) могут приводить к дополнительным, "запрещённым" правилам отбора (напр., DM = b2), что увеличивает число линий в спектре.

Специфическое расщепление линий возникает под действием электрич. поля (слагаемое ). В кристаллах часто (корунд, вольфрамиты, кремний) существуют инверсионно неэквивалентные положения, в к-рых могут с равной вероятностью находиться примесные ионы. Так как магн. поле нечувствительно к операции инверсии, оно эти положения не различает, и в спектре ЭПР линии от них совпадают. Приложенное к кристаллу электрич. поле для разных неэквивалентных положений в силу их взаимной инвертированности будет направлено в противоположные стороны. Поправки к H р (линейные по E )от разных положений будут с противоположными знаками, и смешение двух групп линий проявится в виде расщепления.

В отсутствие магн. поля ( =0) расщепление уровней, называемое начальным, обусловлено др. членами (2). Число возникающих уровней, кратность их вырождения зависят от величины спина и симметрии парамагн. центра. Между ними возможны переходы (соответствующее явление получило назв. б е с п о л е в о г о р е з о н а н с а). Для его осуществления можно менять частоту v эл--магн. излучения, либо при v = const менять расстояние между уровнями внеш. электрич. полем, давлением, изменением темп-ры.

Определение симметрии парамагнитного центра . Угл. зависимость H р (q, f) отражает симметрию спинового гамильтониана, к-рая в свою очередь связана с симметрией парамагн. центра. Это даёт возможность по виду ф-ции H р (q, f), найденной экспериментально, определять симметрию центра. В случае высокосимметричных групп (О h , T d , C 4u , и др.) функция H р (q, f) обладает рядом характерных особенностей: 1) положения экстремумов для линий разных переходов совпадают; 2) расстояние между экстремумами равно p/2 (эффект ортогональности); 3) ф-ция H р симметрична относительно положений экстремумов и др. В случае низкосимметричных групп (C 1 , C 2 , C 3 и др.) все эти закономерности нарушены (эффекты низкой симметрии). Эти эффекты используются для определения структуры дефектов.

Обычному ЭПР соответствует спиновый гамильтониан, не учитывающий электрич. полей (=0). В него входят лишь операторы момента кол-ва движения и магн. поля. В силу их псевдовекторной природы макс. число несовпадающих спиновых гамильтонианов будет равно 11 (из 32 возможных точечных групп). Это приводит к неоднозначности в определении симметрии парамагн. центров, к-рую можно устранить, используя внеш. электрич. поле. Линейный по E оператор различен для разных точечных групп, не обладающих центром инверсии (для инверсионных центров =0). На 1-м этапе из экспериментов без поля E определяется совокупность групп с одним и тем же гамильтонианом, соответствующая симметрии спектра обычного ЭПР. На 2-м этапе используется поле E и учитывается то обстоятельство, что в каждую совокупность групп входит лишь одна группа с центром инверсии.

Исследование неупорядоченных систем . Наряду с изучением парамагн. центров в совершенных кристаллах ЭПР применяют и для исследования неупорядоченных систем (порошки, стёкла, растворы, кристаллы с дефектами). Особенностью таких систем является неодинаковость (неоднородность) условий в местах расположения центров из-за различий во внутр. электрич. (магн.) полях и деформациях, вызванных структурными искажениями кристалла; неэквивалентности ориентации парамагн. центров по отношению к внеш. полям; неоднородности последних. Это приводит к разбросу параметров спинового гамильтониана и как следствие к неоднородному уширению линий ЭПР. Изучение этих линий позволяет получить информацию о характере и степени дефектности кристалла. Неоднородное уширение любой природы можно рассматривать с единой точки зрения. Общее выражение для формы линии имеет вид:

где y - функция, описывающая исходную форму линии без учёта возмущающих факторов; V (F) - вероятность перехода в единицу времени; r(F ) - ф-ция распределения параметров F(F 1 , F 2 , .·., F k) , характеризующих механизмы уширения (компоненты полей, деформаций, углы). Так, в случае хаотически ориентированных парамагн. центров (порошки) под F следует понимать углы Эйлера, характеризующие ориентацию частицы порошка по отношению к системе координат, связанной с внеш. полями. На рис. 2 приведён типичный спектр ЭПР порошка для спинового гамильтониана вида Вместо угл. зависимости одиночной узкой линии, присущей парамагн. центрам в монокристаллах, в этом случае возникает ориентационно уширенная огибающая линия.

Рис. 2. Сигнал электронного парамагнитного резонан са хаотически ориентированных парамагнитных центров. Линия поглощения (а ) и её производная (б ) в случае ромбической симметрии спинового гамильто ниана. Характерные точки спектра связаны с параметрами спинового гамильтониана соотношением H pi =w/bg iii .

Релаксационные процессы . ЭПР сопровождается процессами восстановления нарушенного эл--магн. излучением равновесия в среде, соответствующего распределению Больцмана. Эти релаксац. процессы обусловлены связью между парамагн. центром и решёткой, а также центров между собрй. Соответственно различают с п и н-р е ш ё-т о ч н у ю и с п и н-с п и н о в у ю релаксации. Если переходы под действием эл--магн. волны преобладают, наступает явление насыщения (выравнивание населённостей уровней), проявляющееся в уменьшении сигнала ЭПР. Релаксац. процессы характеризуются временами релаксации и описываются кинетич. ур-ниями (см. Кинетическое уравнение основное) . В случае двух уровней i и j ур-ния для населённостей n i и n j - имеют вид

где a = u 0 ij + u ij , b = u 0 ji + u ji , u 0 ij и u ij -вероятности перехода в единицу времени с уровня i на уровень j под действием эл--магн. волны и релаксац. механизмов соответственно ( u 0 ij = u 0 ji) . Время релаксации T р определяется выражением T p = (u ij +u ji ) -1 и характеризует скорость установления равновесия. Релаксац. процессы, определяя времена жизни частиц на спиновых уровнях, приводят к их уширению, что сказывается на ширине и форме линии ЭПР. Это уширение, к-рое одинаковым образом проявляется у всех парамагн. центров, принято называть однородным. Оно определяет, в частности, ф-цию y, входящую в (3).

Двойные резонансы . Для описания спиновой системы введено понятие с п и н о в о й т е м п е р а т у р ы Т s . Определяющая распределение Больцмана связь между населённостью уровней и темп-рой обобщена на случай неравновесных населённостей. Из неё при произвольных соотношениях населённостей верх. (п в )и ниж. (n н) уровней следует, что Т s =-()/ln(n в /n н). При n в = n н (насыщение) T s = ,а при n в >n н величина T s < 0. Возможность создания неравновесной населённости и, в частности, ситуаций, при к-рых T s = и T s <0, привело к развитию двойных резонансов на базе ЭПР. Они характеризуются тем, что при наличии многоуровневой системы осуществляются резонансные переходы одновременно (или в опре-дел. последовательности) на двух частотах (рис. 3). Цель осуществления двойных резонансов: увеличение интенсивности поглощения за счёт увеличения разности населённостей (рис. 3, а); получение источника эл--магн. излучения путём создания на верхнем уровне большей населённости, чем на нижнем (рис. 3, б) . Принцип усиления сигнала лёг в основу реализации ряда двойных резонансов в случаях, когда в системе имеются спины разных сортов. Так, при наличии электронных и ядерных спинов возможен двойной э л е к т р о н н о-я д е рн ый р е з о н а н с (ДЭЯР). Сверхтонкое расщепление уровней обычно значительно меньше зеемановского. Это создаёт возможность усиливать переходы между сверхтонкими подуровнями путём насыщения спин-электронных переходов. В методе ДЭЯР повышается не только чувствительность аппаратуры, но и её разрешающая способность, т. к. сверхтонкие взаимодействия с каждым ядром можно наблюдать непосредственно в соответствующем спин-ядерном переходе (в то время как анализ сверхтонкой структуры по спектру ЭПР во многих случаях затруднён из-за перекрывания линий). Благодаря этим преимуществам ДЭЯР нашёл широкое применение в физике твёрдого тела, и в частности в физике полупроводников. С его помощью удаётся проанализировать ядра многих координац. сфер вблизи дефекта, что позволяет однозначно определить ею природу и свойства. Двойные резонансы, связанные с получением источников эл--магн. излучения, легли в основу работы квантовых генераторов, что привело к созданию и развитию нового направления - квантовой электроники.


Рис. 3. Двойной резонанс в многоуровневой системе . Выделены 3 уровня, для которых и n 1 0 - n 0 2 >>п 0 2 - п 0 3 (п 0 -равновесное значение); а - усиление поглощения; интенсивным электромагнитным излучением насыщаются уровни 1 и 2, так что n 1 n 2 = (n 0 1 + n 0 2)/2; в результате п 2 - п 3 увеличивается на (n 0 1 - n 0 2 )/ 2, и сигнал поглощения на частоте v 32 резко возрастает; б -мазерный эффект; насыщение уровней 1 и 3 приво дит к необходимому условию [n 3 -n 2 (n 0 1 -n 0 2)/2>0] для генерирования эл--магн. излучения на частоте v 32 ·

Заключение . ЭПР нашёл широкое применение в разл. областях физики, химии, геологии, биологии, медицине. Интенсивно используется для изучения поверхности твёрдых тел, фазовых переходов, неупорядоченных систем. В физике полупроводников с помощью ЭПР исследуются мелкие и глубокие точечные примесные центры, свободные носители заряда, носитель-примесные пары и комплексы, радиац. дефекты, дислокации, структурные дефекты, дефекты аморфизации, межслойные образования (типа границ Si - SiO 2), изучаются носитель-примесное взаимодействие, процессы рекомбинации, фотопроводимость и др. явления.

Лит.: Альтшулер С. А., Козырев Б. M., Электронный парамагнитный резонанс соединений элементов промежуточных групп, 2 изд., M., 1972; Пул Ч., Техника ЭПР-спектроскопии, пер. с англ., M., 1970; Абрагам А., Блини Б., Электронный парамагнитный резонанс переходных ионов, пер. с англ., г. 1-2, M., 1972-73; Мейльман M. Л., Самойлович M. И., Введение в спектроскопию ЭПР активированных монокристаллов, M., 1977; Электрические эффекты в радиоспектроскопии, под ред. M. Ф. Дей-гена, M., 1981; Ройцин А. Б., Маевский В. H., Радиоспектроскопия поверхности твердых тел, К., 1992; Радиоспектроскопия твердого тела, под ред. А. Б. Ройцина, К., 1992. А. Б. Ройцин .

Электронный парамагнитный резонанс (ЭПР) - явление резонансного поглощения электромагнитного излучения парамагнитным веществом, помещенным в постоянное магнитное поле. Обусловлен квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (эффект Зеемана). Спектры ЭПР наблюдаются, главным образом, в диапазоне сверхвысоких частот (СВЧ).

Метод электронного парамагнитного резонанса позволяет оценить эффекты, проявляющиеся в спектрах ЭПР из-за наличия локальных магнитных полей. В свою очередь локальные магнитные поля отражают картину магнитных взаимодействий в исследуемой системе. Таким образом, метод ЭПР спектроскопии позволяет исследовать как структуру парамагнитных частиц, так и взаимодействие парамагнитных частиц с окружением.

ЭПР спектрометр предназначен для регистрации спектров и измерения параметров спектров образцов парамагнитных веществ в жидкой, твердой или порошкообразной фазе. Он используется при реализации существующих и разработке новых методик исследований веществ методом ЭПР в различных областях науки, техники и здравоохранения: например, для исследования функциональных характеристик биологических жидкостей по спектрам введенных в них спиновых зондов в медицине; для обнаружения радикалов и определения их концентрации; в исследовании внутримолекулярной подвижности в материалах; в сельском хозяйстве; в геологии .

Базовым устройством анализатора является спектрометрический блок - спектрометр электронного парамагнитного резонанса (ЭПР спектрометр).

Анализатор обеспечивает возможность исследования образцов:

  • с регуляторами температур - системами термостатирования образца (в том числе, в диапазоне температур от -188 до +50 ºС и при температуре жидкого азота);
  • в кюветах, ампулах, капиллярах и трубках с использованием систем автоматической смены и дозирования образцов.

Особенности работы ЭПР спектрометра

Парамагнитный образец в специальной кювете (ампуле или капилляре) помещается внутрь рабочего резонатора, расположенного между полюсами электромагнита спектрометра. Электромагнитное СВЧ излучение постоянной частоты поступает в резонатор. Условие резонанса достигается путем линейного изменения напряженности магнитного поля. Для повышения чувствительности и разрешающей способности анализатора используется высокочастотная модуляция магнитного поля.

Когда индукция магнитного поля достигает величины, характерной для данного образца, происходит резонансное поглощение энергии этих колебаний. Преобразованное излучение далее поступает на детектор. После детектирования сигнал обрабатывается и подается на регистрирующее устройство. Высокочастотная модуляция и фазочувствительное детектирование преобразуют сигнал ЭПР в первую производную кривой поглощения, в виде которой и происходит регистрация спектров электронного парамагнитного резонанса. В этих условиях регистрируется и интегральная линия поглощения ЭПР. Пример регистрируемого спектра резонансного поглощения представлен на рисунке ниже.

АО «МЕДИЦИНСКИЙ УНИВЕРСИТЕТ АСТАНА»

Кафедра информатики и математики с курсом медбиофизики

Реферат

По медбиофизике

Тема «Использование ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР) в медицинских исследованиях»

Работа выполнена студентом:

Факультет общей медицины, стоматологии и фармации

Работу проверил:

I Введение.

II Основная часть. ЭПР и ЯМР: физическая сущность и процессы, лежащие в основе этих явлений, применение в медико-биологических исследованиях.

1) Электронный парамагнитный резонанс.

а) Физическая сущность ЭПР.

б) Расщепление энергетических уровней. Эффект Зеемана.

в) Электронное расщепление. Сверхтонкое расщепление.

г) Спектрометры ЭПР: устройство и принцип работы.

д) Метод спинового зонда.

е) Применение спектров ЭПР в медико-биологических исследованиях.

2) Ядерный магнитный резонанс.

а) Физическая сущность ЯМР.

б) Спектры ЯМР.

в) Использование ЯМР в медико-биологических исследованиях: ЯМР-интроскопия (магнитно-резонансная томография).

III Заключение. Значение медицинских методов исследования, основывающихся на ЭПР и ЯМР.


I . Введение.

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Однако такие переходы осуществляются индуцировано под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщепленными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом. В зависимости от типа частиц – носителей магнитного момента – различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

II . Основная часть. ЭПР и ЯМР: физическая сущность и процессы, лежащие в основе этих явлений, применение в медико-биологических исследованиях.

1. Электронный парамагнитный резонанс. Электронный парамагнитный резонанс (ЭПР), это резонансное поглощение электромагнитной энергии в сантиметровом или миллиметровом диапазоне длин волн веществами, содержащими парамагнитные частицы. ЭПР - один из методов радиоспектроскопии. Вещество называется парамагнитным, если оно не имеет макроскопического магнитного момента в отсутствие внешнего магнитного поля, но приобретает его после приложения поля, при этом величина момента зависит от поля, а сам момент направлен в ту же сторону, что и поле. С микроскопической точки зрения парамагнетизм вещества обусловлен тем, что атомы, ионы или молекулы, входящие в это вещество, обладают постоянными магнитными моментами, случайно ориентированными друг относительно друга в отсутствие внешнего магнитного поля. Приложение постоянного магнитного поля приводит к направленному изменению их ориентаций, вызывающему появление суммарного (макроскопического) магнитного момента.

ЭПР открыт Е. К. Завойским в 1944 году. Начиная с 1922 в ряде работ высказывались соображения о возможности существования ЭПР. Попытка экспериментально обнаружить ЭПР была предпринята в середине 30-х годов нидерландским физиком К. Гортером. Однако ЭПР удалось наблюдать только благодаря радиоспектроскопическим методам, разработанным Завойским. ЭПР - частный случай магнитного резонанса.

Физическая сущность ЭПР. Суть явления электронного парамагнитного резонанса заключается в следующем. Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряжённостью B 0 , то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровней, положение которых описывается выражением: W = gβB 0 M, (где М=+J, +J-1, …-J) и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J.

Если теперь к парамагнитному центру приложить электромагнитное поле с частотой ν, поляризованное в плоскости, перпендикулярной вектору магнитного поля B 0 , то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ΔМ=1. При совпадении энергии электронного перехода с энергией фотона электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса hν = gβB 0 .

Расщепление энергетических уровней. Эффект Зеемана. В отсутствие внешнего магнитного поля магнитные моменты электронов ориентированы случайным образом, и их энергия практически не отличается друг от друга (Е 0). При наложении внешнего магнитного поля магнитные моменты электронов ориентируются в поле в зависимости от величины спинового магнитного момент, и их энергетический уровень расщепляется на два. Энергия взаимодействия магнитного момента электрона с магнитным полем выражается уравнением:

, - магнитный момент электрона, Н - напряженность магнитного поля. Из уравнения коэффициента пропорциональности следует, что ,

а энергия взаимодействия электрона с внешним магнитным полем составит

.

Это уравнение описывает эффект Зеемана, который можно выразить следующими словами: энергетические уровни электронов, помещенных в магнитное поле, расщепляются в этом поле в зависимости от величины спинового магнитного момента и интенсивности магнитного поля.

Электронное расщепление. Сверхтонкое расщепление. Большинство приложений, в том числе и медико-биологических, базируются на анализе группы линий (а не только синглентых) в спектре поглощения ЭПР. Наличие в спектре ЭПР группы близких линий условно называют расщеплением. Имеется два характерных типа расщепления для спектра ЭПР. Первое – электронное расщепление – возникает в тех случаях, когда молекула или атом обладают не одним, а несколькими электронами, вызывающими ЭПР. Второе – сверхтонкое расщепление – наблюдается при взаимодействии электронов с магнитным моментом ядра. Согласно классическим представлениям, электрон, обращающийся вокруг ядра, как и любая движущаяся по круговой орбите заряженная частица, имеет дипольный магнитный момент. Аналогично и в квантовой механике, орбитальный угловой момент электрона создаёт определённый магнитный момент. Взаимодействие этого магнитного момента с магнитным моментом ядра (обусловленным ядерным спином) приводит к сверхтонкому расщеплению (т. е. создаёт сверхтонкую структуру). Однако электрон также обладает спином, дающим вклад в его магнитный момент. Поэтому сверхтонкое расщепление имеется даже для термов с нулевым орбитальным моментом. Расстояние между подуровнями сверхтонкой структуры по порядку величины в 1000 раз меньше, чем между уровнями тонкой структуры (такой порядок величины по существу обусловлен отношением массы электрона к массе ядра).

Спектрометры ЭПР: устройство и принцип работы. Устройство радиоспектрометра ЭПР во многом напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра. Источником излучения в радиоспектрометре является клистрон, представляющий из себя радиолампу, дающую монохроматическое излучение в диапазоне сантиметровых волн. Диафрагме спектрофотометра в радиоспектрометре соответствует аттенюатор, позволяющий дозировать мощность, падающую на образец. Кювета с образцом в радиоспектрометре находится в специальном блоке, называемом резонатором. Резонатор представляет собой параллелепипед, имеющий цилиндрическую или прямоугольную полость в которой находится поглощающий образец. Размеры резонатора таковы, что в нем образуется стоячая волна. Элементом отсутствующем в оптическом спектрометре является электромагнит, создающий постоянное магнитное поле, необходимое для расщепления энергетических уровней электронов. Излучение, прошедшее измеряемый образец, в радиоспектрометре и в спектрофотометре, попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце или компьютере. Следует отметить еще одно отличие радиоспектрометра. Оно заключается в том, что излучение радиодиапазона передается от источника к образцу и далее к детектору с помощью специальных трубок прямоугольного сечения, называемых волноводами. Размеры сечения волноводов определяются длиной волны передаваемого излучения. Эта особенность передачи радиоизлучения по волноводам и определяет тот факт, что для регистрации спектра ЭПР в радиоспектрометре используется постоянная частота излучения, а условие резонанса достигается изменением величины магнитного поля. Еще одной важной особенностью радиоспектрометра является усиление сигнала посредством его модуляции высокочастотным переменным полем. В результате модуляции сигнала происходит его дифференцирование и превращение линии поглощения в свою первую производную, являющуюся сигналом ЭПР.

Метод спинового зонда. Спиновые зонды - индивидуальные парамагнитные химические вещества, применяемые для изучения различных молекулярных систем с помощью спектроскопии ЭПР. Характер изменения спектра ЭПР этих соединений позволяет получать уникальную информацию о взаимодействиях и динамике макромолекул и о свойствах различных молекулярных систем. Это метод исследования молекулярной подвижности и различных структурных превращений в конденсированных средах по спектрам электронного парамагнитного резонанса стабильных радикалов (зондов), добавленных к исследуемому веществу. Если стабильные радикалы химически связаны с частицами исследуемой среды, их называют метками и говорят о методе спиновых (или парамагнитных) меток. В качестве зондов и меток используют главным образом нитроксильные радикалы, которые устойчивы в широком интервале температур (до 100-200○С), способны вступать в химические реакции без потери парамагнитных свойств, хорошо растворимы в водных и органических средах. Высокая чувствительность метода ЭПР позволяет вводить зонды (в жидком или парообразном состоянии) в малых количествах - от 0,001 до 0,01% по массе, что не вызывает изменения свойств исследуемых объектов. Метод спиновых зондов и меток применяется особенно широко для исследования синтетических полимеров и биологических объектов. При этом можно изучать общие закономерности динамики низкомолекулярных частиц в полимерах, когда спиновые зонды моделируют поведение различных добавок (пластификаторы, красители, стабилизаторы, инициаторы); получать информацию об изменении молекулярной подвижности при химической модификации и структурно-физических превращениях (старение, структурирование, пластификация, деформация); исследовать бинарные и многокомпонентные системы (сополимеры, наполненные и пластифицированные полимеры, композиты); изучать растворы полимеров, в частности влияние растворителя и температуры на их поведение; определять вращательную подвижность ферментов, структуру и пространств. расположение групп в активном центре фермента, конформацию белка при различных воздействиях, скорость ферментативного катализа; изучать мембранные препараты (например, определять микровязкость и степень упорядоченности липидов в мембране, исследовать липид-белковые взаимодействия, слияние мембран); изучать жидкокристаллические системы (степень упорядоченности в расположении молекул, фазовые переходы), ДНК, РНК, полинуклеотиды (структурные превращения под влиянием температуры и среды, взаимодействие ДНК с лигандами и интеркалирующими соединениями). Метод используют также в различных областях медицины для исследования механизма действия лекарственных препаратов, анализа изменений в клетках и тканях при различных заболеваниях, определении низких концентраций токсичных и биологически активных веществ в организме, изучения механизмов действия вирусов.

Явления электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР) широко используются в современной физике, химии, биологии и медицине при исследовании процессов, протекающих с участием парамагнитных молекул и ядер. Кроме того, ядерный магнитный резонанс является физической основой наиболее мощного современного метода получения изображений органов и тканей человека - магнитно-резонансной томографии (МРТ).

Метод ЭПР приобрел большое значение в химии и биологии прежде всего благодаря способности обнаруживать и идентифицировать свободные радикалы в химических и биологических системах. При этом с высокой точностью определяются не только вид и концентрация свободных радикалов, но и кинетика биохимических реакций, протекающих с образованием свободных радикалов как в промежуточных, так и в конечных стадиях реакции.

Свободные радикалы в биологических системах

Известно, что в соответствии с принципом Паули в каждом квантовом состоянии молекулы может находиться не более двух электронов, спины которых должны быть противоположно ориентированы (скомпенсированы). Спин - это внутреннее свойство электрона, которое проявляется в наличии у него собственного механического момента J , т.е. электрон представляет собой как бы «закрученный» волчок. Для устойчивых молекул обычно характерно четное число электронов и каждая пара электронов на любом энергетическом уровне имеет противоположно направленные, или, как говорят, скомпенсированные (спаренные) спины.

Однако есть соединения, у которых число электронов нечетное и тогда у одного из валентных электронов спин не будет скомпенсирован. Такая же ситуация возникает и в том случае, если у стабильного соединения отнять либо, наоборот, добавить ему один электрон. Тогда спин одного из электронов тоже будет не скомпенсирован.

Молекула или ее часть, имеющая неспаренный электрон, называется свободным радикалом.

С точки зрения химии наличие в молекуле неспаренного электрона есть не что иное, как наличие у нее свободной валентности. Поэтому свободные радикалы очень активны в химическом отношении. Они легко вступают в химические связи с другими молекулами и химическими соединениями, что влияет на протекание многих процессов в биологических системах.

Наиболее важную роль в биологических системах играют следующие виды радикалов (радикал часто обозначается точкой над соответствующей химической группой):

  • свободные радикалы воды: ОН - гидроксильный, Н0 2 - перекисный, 0 2 - супероксид;
  • свободные радикалы органических молекул, образующиеся при действии ионизирующей и ультрафиолетовой радиации:

где е“ - сольватированный электрон, а образующийся радикал обозначен точкой сверху.

Эти свободные радикалы играют важную роль в возникновении радиационного повреждения тканей и органов, а также при УФ-ожогах;

  • свободные радикалы хинонов участвуют в окислительновосстановительных реакциях организма;
  • свободные радикалы липидов могут образовываться в определенных условиях при окислении их жирных кислот. Наличие свободных радикалов в липидах биологических мембран ведет к нарушению их проницаемости для ионов и других молекул, что приводит к развитию той или иной патологии в организме. Примером таких патологий может служить развитие УФ-эритемы кожи, световых ожогов глаз и др.

Основное физическое отличие свободных радикалов от других молекул состоит в том, что свободные радикалы парамагнитны, т.е. обладают собственным магнитным моментом, тогда как стабильные молекулы его не имеют, т.е. они диамагнитны. Именно это различие в магнитных свойствах и позволяет обнаруживать свободные радикалы среди диамагнитных молекул.

Основным физическим методом изучения свободных радикалов в биологических системах является электронный парамагнитный резонанс (ЭПР). Метод ЭПР получил большое распространение в биологии и медицине именно благодаря его способности определять наличие и вид свободных радикалов в биологических системах in vivo, исследовать кинетику биохимических реакций с их участием и др.

При этом очень важно, что метод этот неинвазивный, безвредный и позволяет исследовать процессы, протекающие в живых организмах, не внося никаких изменений в эти процессы.

Вверх