Ролик строение газообразных жидких и твердых тел. Силы взаимодействия молекул. Строение газообразных, жидких и твёрдых тел. Строение газов, жидкостей и твердых тел

1 слайд

2 слайд

3 слайд

Газы Газ (газообразное состояние) (от нидерл. gas) - агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма[и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда).

4 слайд

Газообразное состояние - самое распространённое состояние вещества Вселенной (межзвёздное вещество, туманности, звёзды, атмосферы планет и т. д.). По химическим свойствам газы и их смеси весьма разнообразны - от малоактивных инертных газов до взрывчатых газовых смесей. К газам иногда] относят не только системы из атомов и молекул, но и системы из других частиц - фотонов, электронов, броуновских частиц, а также плазму

5 слайд

Газы могут неограниченно расширяться. Они не сохраняют не формы ни объёма Многочисленные удары молекул о стенки сосуда создают давление газа.

6 слайд

Жидкость Жидкость - одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

7 слайд

Жидкость – это физическое тело, обладающее двумя свойствами: Обладает текучестью, благодаря которой она не имеет формы и принимает форму того сосуда, в котором она находится. Она мало изменяет форму и объем при изменении давления и температуры, в чем она сходна с твердым телом.

8 слайд

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохраненные формы (внутренних частей жидкого тела). Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло), выше - в газообразное (происходит испарение). Границы этого интервала зависят от давления. Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза). Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.

9 слайд

Образование свободной поверхности и поверхностное натяжение Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться. Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости. Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.

10 слайд

Испарение - постепенный переход вещества из жидкости в газообразную фазу (пар). При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение. Конденсация - обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости. Кипение- процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх. Смачивание - поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз. Смешиваемость- способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло. Переход жидкостей из одного состояния в другое

11 слайд

Твёрдые тела Твёрдое тело - это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия.

Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.

Свойства и строение твердых тел

Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.

Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, средняя скорость движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.

Кристаллическое строение твердых тел

Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука — кристаллография.

Химическое строение твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.

Зонная теория строения твердого тела рассматривает твердое вещество как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.

Что такое структура жидкости?

Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы жидкого вещества свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.

Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.

Какова структура и строение газообразных тел?

Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.

Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.

Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.

Изменение состояния

Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.

Поведение тел в разных физических состояниях

Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.

Особенности внутренней структуры

Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.

Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.

Упрощенные модели

В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул. Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.

Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические свойства вещества зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но молекулы не сдавливают друг друга.

Молекулы с огромными скоростями - сотни метров в секунду -движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведет себя иначе, чем молекула газа. В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т.е. суммарная сила взаимодействия молекулы равна нулю. Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10-11 с. Время же одного колебания значительно меньше (10-12-10-13 с). С повышением температуры время оседлой жизни молекул уменьшается. Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И. Френкелем, позволяет понять основные свойства жидкостей. Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема силы отталкивания становятся очень велики. Этим и объясняется малая сжимаемость жидкостей. Как известно, жидкости текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы (рис.8.8). Вот почему жидкость течет и принимает форму сосуда.

Твердые тела.

Атомы или молекулы твёрдых тел колеблются около определённых положений равновесия, поэтому твёрдые тела сохраняют не только объём,но и форму

Если соединить центр равновесия атомов или ионов твёрдого тела, то получится правильная пространственная решётка, называемая кристалической

Кристаллические тела.

Кристаллы - это твёрдые тела, атомы или молекулы которых занимают определённое, порядочное положение в пространстве. Поэтому кристаллы имеют плоские грани. Например крупинка обычной поваренной соли имеет плоские грани, составляющие друг с другом прямые углы.

Анизотропия кристаллов.

Правильная внешняя форма не единственное и даже не самое главное следствие упорядоченного строения кристалла. Главное- это зависимость физических свойств от выбранного в кристалле направления. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл кварца по-разному преломляет свет в зависимости от направления падающих на него лучей. Зависимость физических свойств от направления внутри кристалла называют анизотропией. Все кристаллические тела анизотропны.

Монокристаллы и поликристаллы.

Кристаллическую структуру имеют металлы. Если взять большой кусок металла, то на первый взгляд его кристаллическое строении никак не проявляется ни во внешнем виде куска, ни в его физических свойствах

Обычно металл состоит из огромного количества сросшихся друг с другом маленьких кристалликов. Свойства каждого кристаллика зависят от направления, но кристаллики ориентированы по отношению к друг другу беспорядочно. В результате в объеме, значительно превышающем объем отдельных кристалликов, все направления внутри металлов равноправны и свойства металлов одинаковы по всем направлениям.

Твердое тело, состоящее из большого числа маленьких кристалликов, называют поликристаллическим. Одиночные кристаллы называют монокристаллами.

Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.

Свойства и строение твердых тел

Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.

Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.

Кристаллическое строение твердых тел

Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука - кристаллография.

Твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.

Зонная теория строения твердого тела рассматривает как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.

Что такое структура жидкости?

Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.

Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.

Какова структура и строение газообразных тел?

Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.

Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.

Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.

Изменение состояния

Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.


  • Испарение. Строение и свойства жидких тел позволяют им при определенных условиях переходить в совершенно другое физическое состояние. Например, случайно пролив бензин при заправке автомобиля, можно довольно быстро почувствовать его резкий запах. Как это происходит? Частицы двигаются по всей жидкости, в итоге определенная их часть достигает поверхности. Их направленное движение может вынести эти молекулы за пределы поверхности в пространство над жидкостью, но притяжение будет затягивать их обратно. С другой стороны, если частица движется очень быстро, она может оторваться от других на приличное расстояние. Таким образом, при увеличении скорости частиц, которое случается обычно при нагревании, происходит процесс испарения, то есть преобразования жидкости в газ.

Поведение тел в разных физических состояниях

Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.

Особенности внутренней структуры

Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.

Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.

Упрощенные модели

В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул.

Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.

Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.

МБОУ «Мужевская СОШ им. Н.В.Архангельского»

Конспект открытого урока

по теме:

«Строение газообразных, жидких и твёрдых тел» в 10 классе.

Работу выполнил учитель физики

Лощаков Вячеслав Викторович

2014-2015 уч.год

Урок "Строение газообразных, жидких и твёрдых тел"

Цель урока: на основе МКТ объяснить особенности строения тел в различных состояниях, расширить кругозор учащихся по данному вопросу, показать неразрывную связь изучаемого материала с химией, математикой, способствовать развитию интереса к предмету, выработать внимание, трудолюбие, стремление к познанию окружающего мира.

Задачи урока:

Образовательные:

Способствовать овладению знаниями по теме “Строение газообразных, жидких и твёрдых тел”;

Установить характер зависимости сил притяжения и отталкивания от расстояния между молекулами;

Учиться решать качественные задачи.

Развивающие:

Развивать:

наблюдательность, самостоятельность;

логическое мышление

умение применять знания теории на практике;

содействовать развитию речи, мышления

Воспитательные:

Формирование представлений о единстве и взаимосвязи явлений природы.

Формировать положительное отношение к предмету

Тип урока: Урок изучения нового материала.

Форма урока: комбинированный

Оборудование и материалы: , компьютер, экран, мультимедийный проектор, демонстрационный материал: кусок льда, колбы различной формы с водой, эл.чайник с горячей водой, пластиковая бутылка с водой, колбы, различной формы, шприц, модели кристаллических решеток, различные материалы (сталь, чугун, медь, алюминий, пластмассы, смолы, подсолнечное масло и т.д.), воздушные шары, насос.

Ход урока

    Организационная часть .

Учитель: Здравствуйте. В 1836 году русский поэт Фёдор Иванович Тютчев написал такие проникновенные строки (Слайд 1)

Не то, что мните вы, природа:
Не слепок, не бездушный лик –
В ней есть душа, в ней есть свобода,
В ней есть любовь, в ней есть язык.

2) Постановка целей и задач урока.

Атомы и молекулы могут располагаться в пространстве в самом причудливом порядке, составить различные вещества, которые под действием внешних условий (температуры, давления) могут находиться в различных агрегатных состояниях. (Слайд2)

Учитель: Кто назовет эти состояния?

Ответ: твердое, жидкое, газообразное.

Учитель: правильно, и есть еще одно, четвертое состояние вещества - плазма, но об этом мы поговорим на других уроках.

А сегодня мы рассмотрим строение газообразных, жидких и твердых тел. Откройте тетради и запишите тему урока:

Строение газообразных, жидких и твёрдых тел”. (Слайд 3)

На партах у вас образец таблицы, перечертите её себе в тетрадь, мы заполним её в процессе урока. (Слайд 4)

состояние

вещества

расстояние

между

частицами

движение

взаимодействие

энергия

свойства

газообразное

жидкое

твердое

В качестве примера, рассмотрим самое распространённое вещество на Земле – воду. (Слайд 5)

Какой формулой в химии обозначается вода?

Ученик: Н 2 О.

Учитель: правильно, Н 2 О – одного атома кислорода и двух атомов водорода.

Мы знаем, что вода бывает разная: твердая- лёд (демонстрирует кусок льда), жидкая- вода в стакане, газообразная – пар (наливает горячую воду из чайника).

(Слайд 5)

Отличаются ли молекулы льда и пара от молекулы воды?

Ученик: Нет.

Молекулы пара и льда также состоят из одного атома кислорода и двух атомов водорода.(Слайд 6)

Учитель: Зададимся вопросом: почему в одном случае вещество газообразное, в другом жидкое, а в третьем – твердое?

3) Этап объяснения нового материала

Найти ответ на этот вопрос позволяет молекулярно-кинетическая теория.

Вспомним основные положения МКТ, которые были впервые сформулированы великим русским ученым М.В.Ломоносовым.

Ученик :

    все вещества состоят из частиц;

    эти частицы беспорядочно движутся;

    частицы взаимодействуют друг с другом.

Учитель:

Так как состав воды, льда и пара одинаков, то, очевидно, состояние вещества зависит от того, как частицы движутся и как взаимодействуют друг с другом..

Если в самых общих чертах представить себе строение газов, жидкостей и твердых тел, то можно нарисовать такую картину (демонстрирует таблицу с изображением молекул пара, воды, льда).

Учитель: Что можно сказать о взаимном расположении частиц в этих трех состояниях?

Ученик : *В газах частицы расположены далеко друг от друга, беспорядочно. *В жидкостях частицы расположены почти вплотную, порядка в расположении нет.

*В твердых телах молекулы расположены вплотную и в определенном порядке.

Учитель: Правильно. В газах расстояние между частицами в среднем во много раз превышает размеры самих частиц. Сжатие воздуха доказывает наличие больших расстояний между молекулами.

Быстрое распространение запахов доказывает, что молекулы газов движутся с большими скоростями, беспорядочно. Частицы газа подобно бегунам - спринтерам, стремительно проносятся в пространстве

Частицы сталкиваются друг с другом и разлетаются в разные стороны подобно бильярдным шарам. Слабые силы притяжения в газах не способны удержать частицы друг около друга. Поэтому газы могут неограниченно расширяться.

Напоминаю, что движущееся тело обладает кинетической энергией «Е к ». Энергию взаимодействия называют потенциальной «Е п ».

Вывод: вещество находится в газообразном состоянии, если энергия движения во много раз больше энергии взаимодействия.

Учитель: заполнили в таблице, в 1 строку

Состояние

вещества

Строение

Движение

Взаимодействие

Энергия

Свойства

газообразное

l>>r 0 .

беспорядочное

хаотическое,

υ » 100 м/с

Упругое столкновение,

F взаимодействия малы

Легко сжимаются.

Неограниченно расширяются.

Не сохраняют ни форму, ни объем

l ≈ r 0 .

Ближний порядок

Колебательное с перескоками,

Притяжение и отталкивание на расстоянии,

F взаимодействия достаточно велики

Е п › Е к

Плохо сжимаются Сохраняют объём

Текучи, легко меняют форму

l ≈ r 0

дальний порядок (кристаллическая решетка)

Колебательное около ОПР

Притяжение и отталкивание

F взаимодействия велики

Сохраняют объём и форму

Плохо сжимаются

Плохо растягиваются

Учитель: Записываем в тетрадь (СЛАЙД 7)

    Легко сжимаются.

    Могут неограниченно расширяться.

    Не сохраняют ни форму, ни объём.

(Учащиеся выполняют запись в тетради.)

Учитель: переходим к жидкостям.

Ученик : *В жидкостях частицы расположены почти вплотную, порядка в расположении нет.

Учитель: Совершенно верно.

Молекулы жидкости находятся непосредственно друг возле друга . l ≈ r 0 . Этим и объясняется малая сжимаемость жидкостей. При попытке изменить объем жидкости (даже на малую величину) силы отталкивания становятся очень велики.

Зажатые, другими молекулами, они совершают как бы “бег на месте” (колеблются около положения равновесия, сталкиваясь с соседними молекулами). Лишь время от времени какая-нибудь молекула совершает “ прыжок”, но тут же попадает в новую «клетку», образованную новыми соседями. Нет свободного движения частиц- всегда есть взаимодействие сразу с несколькими ближайшими частицами. Потенциальная энергия взаимодействия больше кинетической энергии движения.

Характер молекулярного движения в жидкостях, впервые установленный советским физиком Яковым Ильичем Френкелем (портрет ученого на стр 158 учебника), позволяет понять основные свойства жидкостей.

Учитель: Записываем основные выводы по жидкостям (Слайд 9)

    Сохраняют свой объём

    Текучи, легко меняют форму

    Принимают форму сосуда

    Плохо сжимаются

Учитель: Твердые тела.

Ученик : *В твердых телах молекулы расположены вплотную и в определенном порядке.

Учитель: Да. l ≈ r 0 . Атомы или молекулы твердых тел в отличие от атомов или молекул жидкостей колеблются всегда около определенных положений равновесия. Это объясняется взаимодействием частиц. На каждую частицу действует большее число частиц, чем в случае с жидкостью, её положение более устойчиво, так как возникает дальний порядок. Если соединить эти положения, то получится пространственная решетка, её называют кристаллическая.

На стр. 159 учебника, рис. 8.9 и 8.10 изображены кристаллические решетки поваренной соли и алмаза. (Слайд 10)

Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам. Твердые тела сохраняют не только объем, но и форму.

Существует притяжение и отталкивание частиц, потенциальная энергия взаимодействия частиц значительно больше их кинетической энергии (больше, чем у жидкостей).

Алмаз и графит - это атомы одного и того же элемента углерода, но расположенные в разном порядке и имеющие разные кристаллические решетки.

Алмаз - самый твердый среди минералов, это царь всех камней. Он крепче всех веществ на свете, это свет солнца, сгустившийся в земле и охлажденный временем. Он играет всеми цветами, но сам остаётся прозрачным, точно капля воды. Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни, алмазные буры используют при разведке недр. Через волочильные алмазы протягивают нити парашютной ткани, с помощью алмаза изготавливают тонкую проволоку твердых металлов .

Природный алмаз встречается редко, поэтому его получают искусственным путем.

Графит совершенно не похож на алмаз. Твердость графита столь незначительна, что он легко оставляет след на бумаге. Из него изготавливают стержни для карандашей.

Разрабатывая проблему синтеза алмаза из графита исследователи обратили внимание на материал, очень схожий по структуре с графитом -нитрит бора,- и получили алмазоподобный материал борнитрит (боразон). Он оказался даже тверже алмаза и термически более стойким (алмаз сгорает при температуре 627°С, а боразон - при 2000 °С). Боразон нашел широкое применение в технике. Так наука привела к созданию нового материала.

Записываем в тетрадь:

(Слайд 11)

    Сохраняют объём и форму

    Плохо сжимаются

    Плохо растягиваются

Учитель: пришло время ответить на поставленный в начале урока вопрос: от чего зависит, что одно и то же вещество может находиться в разных агрегатных состояниях?

Ответы учащихся: От расстояния между частицами, от сил взаимодействия, т.е от того, как расположены молекулы, как они движутся и как взаимодействуют друг с другом. (Слайд14)

4) Этап закрепления пройденного материала. Игра “Что за состояние?” (СЛАЙДЫ 12-30)

Оценку “5” получает учащийся, набравший наибольшее количество баллов.

Учитель выставляет оценки в журнал.

5) Домашнее задание: § 60, ответить на вопросы после параграфа (Слайд 32)

6) Заключение

Учитель : Решать загадки можно вечно.
Вселенная ведь бесконечна.
Спасибо всем нам за урок,
А главное, чтоб был он впрок!

7) Подведение итогов урока.

Что нового узнали на уроке?

Ученик : Знание строения вещества необходимо для того, чтобы понимать все физические явления в природе.

Вверх