Глава iv.простые и сложные вещества. водород и кислород. Кислород и его свойства. Соединения кислорода с водородом Гидрирование органических соединений

§3. Уравнение реакции и как его составить

Взаимодействие водорода с кислородом , как это установил еще сэр Генри Кавендиш , приводит к образованию воды. Давайте на этом простом примере поучимся составлять уравнения химических реакций .
Что получается из водорода и кислорода , мы уже знаем:

Н 2 + О 2 → Н 2 О

Теперь учтем, что атомы химических элементов в химических реакциях не исчезают и не появляются из ничего, не превращаются друг в друга, а соединяются в новых комбинациях , образуя новые молекулы. Значит, в уравнении химической реакции атомов каждого сорта должно быть одинаковое количество до реакции (слева от знака равенства) и после окончания реакции (справа от знака равенства), вот так:

2Н 2 + О 2 = 2Н 2 О

Это и есть уравнение реакции - условная запись протекающей химической реакции с помощью формул веществ и коэффициентов .

Это значит, что в приведенной реакции два моля водорода должны прореагировать с одним молем кислорода , и в результате получится два моля воды .

Взаимодействие водорода с кислородом - совсем не простой процесс. Он приводит к изменению степеней окисления этих элементов. Чтобы подбирать коэффициенты в таких уравнениях, обычно пользуются методом "электронного баланса ".

Когда из водорода и кислорода образуется вода, то это значит, что водород поменял свою степень окисления от 0 до +I , а кислород - от 0 до −II . При этом от атомов водорода к атомам кислорода перешло несколько (n) электронов:

Водород, отдающий электроны, служит здесь восстановителем , а кислород, принимающий электроны - окислителем .

Окислители и восстановители


Посмотрим теперь, как выглядят процессы отдачи и приема электронов по отдельности. Водород , встретившись с "грабителем"-кислородом, теряет все свое достояние - два электрона, и его степень окисления становится равной +I :

Н 2 0 − 2e − = 2Н +I

Получилось уравнение полуреакции окисления водорода.

А бандит-кислород О 2 , отняв последние электроны у несчастного водорода, очень доволен своей новой степенью окисления -II :

O 2 + 4e − = 2O −II

Это уравнение полуреакции восстановления кислорода.

Остается добавить, что и "бандит", и его "жертва" потеряли свою химическую индивидуальность и из простых веществ - газов с двухатомными молекулами Н 2 и О 2 превратились в составные части нового химического вещества - воды Н 2 О .

Дальше будем рассуждать следующим образом: сколько электронов отдал восстановитель бандиту-окислителю, столько тот и получил. Число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем .

Значит, надо уравнять число электронов в первой и второй полуреакциях. В химии принята такая условная форма записи уравнений полуреакций:

2 Н 2 0 − 2e − = 2Н +I

1 O 2 0 + 4e − = 2O −II

Здесь числа 2 и 1 слева от фигурной скобки - это множители, которые помогут обеспечить равенство числа отданных и принятых электронов. Учтем, что в уравнениях полуреакций отдано 2 электрона, а принято 4. Чтобы уравнять число принятых и отданных электронов, находят наименьшее общее кратное и дополнительные множители. В нашем случае наименьшее общее кратное равно 4. Дополнительные множители будут для водорода равны 2 (4: 2 = 2), а для кислорода - 1 (4: 4 = 1)
Полученные множители и будут служить коэффициентами будущего уравнения реакции:

2H 2 0 + O 2 0 = 2H 2 +I O −II

Водород окисляется не только при встрече с кислородом . Примерно так же на водород действуют и фтор F 2 , галоген и известный "разбойник", и казалось бы, безобидный азот N 2 :

H 2 0 + F 2 0 = 2H +I F −I


3H 2 0 + N 2 0 = 2N −III H 3 +I

При этом получается фтороводород HF или аммиак NH 3 .

В обоих соединениях степень окисления водорода становится равной +I , потому что партнеры по молекуле ему достаются "жадные" до чужого электронного добра, с высокой электроотрицательностью - фтор F и азот N . У азота значение электроотрицательности считают равным трем условным единицам, а у фтора вообще самая высокая электроотрицательность среди всех химических элементов - четыре единицы. Так что немудрено им оставить бедняжку-атом водорода без всякого электронного окружения.

Но водород может и восстанавливаться - принимать электроны. Это происходит, если в реакции с ним будут участвовать щелочные металлы или кальций, у которых электроотрицательность меньше, чем у водорода.

10.1.Водород

Название "водород"относится и к химическому элементу, и к простому веществу. Элемент водород состоит из атомов водорода. Простое вещество водород состоит из молекул водорода.

а) Химический элемент водород

В естественном ряду элементов порядковый номер водорода – 1. В системе элементов водород находится в первом периоде в IA или VIIA группе.

Водород – один из самых распространенных элементов на Земле. Молярная доля атомов водорода в атмосфере, гидросфере и литосфере Земли (все вместе это называется земной корой) равна 0,17. Он входит в состав воды, многих минералов, нефти, природного газа, растений и животных. В теле человека в среднем содержится около 7 килограммов водорода.

Существуют три изотопа водорода:
а) легкий водород – протий ,
б) тяжелый водород – дейтерий (D),
в) сверхтяжелый водород – тритий (Т).

Тритий неустойчивый (радиоактивный) изотоп, поэтому в природе он практически не встречается. Дейтерий устойчив, но его очень мало: w D = 0,015% (от массы всего земного водорода). Поэтому атомная масса водорода очень мало отличается от 1 Дн (1,00794 Дн).

б) Атом водорода

Из предыдущих разделов курса химии вам уже известны следующие характеристики атома водорода:

Валентные возможности атома водорода определяются наличием одного электрона на единственной валентной орбитали. Большая энергия ионизации делает атом водорода не склонным к отдаче электрона, а не слишком высокая энергия сродства к электрону приводит к незначительной склонности его принимать. Следовательно, в химических системах образование катиона Н невозможно, а соединения с анионом Н не очень устойчивы. Таким образом, для атома водорода наиболее характерно образование с другими атомами ковалентной связи за счет своего одного неспаренного электрона. И в случае образования аниона, и в случае образования ковалентной связи атом водорода одновалентен.
В простом веществе степень окисления атомов водорода равна нулю, в большинстве соединений водород проявляет степень окисления +I, и только в гидридах наименее электроотрицательных элементов у водорода степень окисления –I.
Сведения о валентных возможностях атома водорода приведены в таблице 28. Валентное состояние атома водорода, связанного одной ковалентной связью с каким-либо атомом, в таблице обозначено символом "H-".

Таблица 28. Валентные возможности атома водорода

Валентное состояние

Примеры химических веществ

I
0
–I

HCl, H 2 O, H 2 S, NH 3 , CH 4 , C 2 H 6 , NH 4 Cl, H 2 SO 4 , NaHCO 3 , KOH
H 2
B 2 H 6 , SiH 4 , GeH 4

NaH, KH, CaH 2 , BaH 2

в) Молекула водорода

Двухатомная молекула водорода Н 2 образуется при связывании атомов водорода единственной возможной для них ковалентной связью. Связь образуется по обменному механизму. По способу перекрывания электронных облаков это s-связь (рис. 10.1 а ). Так как атомы одинаковы, связь неполярная.

Межатомное расстояние (точнее равновесное межатомное расстояние, ведь атомы-то колеблются) в молекуле водорода r (H–H) = 0,74 A (рис.10.1 в ), что значительно меньше суммы орбитальных радиусов (1,06 A). Следовательно, электронные облака связываемых атомов перекрываются глубоко (рис. 10.1 б ), и связь в молекуле водорода прочная. Об этом же говорит и довольно большое значение энергии связи (454 кДж/моль).
Если охарактеризовать форму молекулы граничной поверхностью (аналогичной граничной поверхности электронного облака), то можно сказать, что молекула водорода имеет форму слегка деформированного (вытянутого) шара (рис. 10.1 г ).

г) Водород (вещество)

При обычных условиях водород – газ без цвета и запаха. В небольших количествах он нетоксичен. Твердый водород плавится при 14 К (–259 °С), а жидкий водород кипит при 20 К (–253 °С). Низкие температуры плавления и кипения, очень маленький температурный интервал существования жидкого водорода (всего 6 °С), а также небольшие значения молярных теплот плавления (0,117 кДж/моль) и парообразования (0,903 кДж/моль) говорят о том, что межмолекулярные связи в водороде очень слабые.
Плотность водорода r(Н 2) = (2 г/моль):(22,4 л/моль) = 0,0893 г/л. Для сравнения: средняя плотность воздуха равна 1,29 г/л. То есть водород в 14,5 раза "легче"воздуха. В воде он практически нерастворим.
При комнатной температуре водород малоактивен, но при нагревании реагирует со многими веществами. В этих реакциях атомы водорода могут как повышать, так и понижать свою степень окисления: Н 2 + 2е – = 2Н –I , Н 2 – 2е – = 2Н +I .
В первом случае водород является окислителем, например, в реакциях с натрием или с кальцием: 2Na + H 2 = 2NaH, (t ) Ca + H 2 = CaH 2 . (t )
Но более характерны для водорода восстановительные свойства: O 2 + 2H 2 = 2H 2 O, (t )
CuO + H 2 = Cu + H 2 O. (t )
При нагревании водород окисляется не только кислородом, но и некоторыми другими неметаллами, например, фтором, хлором, серой и даже азотом.
В лаборатории водород получают в результате реакции

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Вместо цинка можно использовать железо, алюминий и некоторые другие металлы, а вместо серной кислоты – некоторые другие разбавленные кислоты. Образующийся водород собирают в пробирку методом вытеснения воды (см. рис. 10.2 б ) или просто в перевернутую колбу (рис. 10.2 а ).

В промышленности в больших количествах водород получают из природного газа (в основном это метан) при взаимодействии его с парами воды при 800 °С в присутствии никелевого катализатора:

CH 4 + 2H 2 O = 4H 2 +CO 2 (t , Ni)

или обрабатывают при высокой температуре парами воды уголь:

2H 2 O + С = 2H 2 + CO 2 . (t )

Чистый водород получают из воды, разлагая ее электрическим током (подвергая электролизу):

2H 2 O = 2H 2 + O 2 (электролиз).

д) Соединения водорода

Гидриды (бинарные соединения, содержащие водород) делятся на два основных типа:
а) летучие (молекулярные) гидриды,
б) солеобразные (ионные) гидриды.
Элементы IVА – VIIA групп и бор образуют молекулярные гидриды. Из них устойчивы только гидриды элементов, образующих неметаллы:

B 2 H 6 ;CH 4 ; NH 3 ; H 2 O; HF
SiH 4 ;PH 3 ; H 2 S; HCl
AsH 3 ; H 2 Se; HBr
H 2 Te; HI
За исключением воды, все эти соединения при комнатной температуре – газообразные вещества, отсюда их название – "летучие гидриды" .
Некоторые из элементов, образующих неметаллы, входят в состав и более сложных гидридов. Например, углерод образует соединения с общими формулами C n H 2n +2 , C n H 2n , C n H 2n –2 и другие, где n может быть очень велико (эти соединения изучает органическая химия).
К ионным гидридам относятся гидриды щелочных, щелочноземельных элементов и магния. Кристаллы этих гидридов состоят из анионов Н и катионов металла в высшей степени окисления Ме или Ме 2 (в зависимости от группы системы элементов).

LiH
NaH MgH 2
KH CaH 2
RbH SrH 2
CsH BaH 2

И ионные, и почти все молекулярные гидриды (кроме Н 2 О и НF) являются восстановителями, но ионные гидриды проявляют восстановительные свойства значительно сильнее, чем молекулярные.
Кроме гидридов, водород входит в состав гидроксидов и некоторых солей. Со свойствами этих, более сложных, соединений водорода вы познакомитесь в следующих главах.
Главными потребителями получаемого в промышленности водорода являются заводы по производству аммиака и азотных удобрений, где аммиак получают непосредственно из азота и водорода:

N 2 +3H 2 2NH 3 (Р , t , Pt – катализатор).

В больших количествах водород используют для получения метилового спирта (метанола) по реакции 2Н 2 + СО = СН 3 ОН (t , ZnO – катализатор), а также в производстве хлороводорода, который получают непосредственно из хлора и водорода:

H 2 + Cl 2 = 2HCl.

Иногда водород используют в металлургии в качестве восстановителя при получении чистых металлов, например: Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.

1.Из каких частиц состоят ядра а) протия, б) дейтерия, в) трития?
2.Сравните энергию ионизации атома водорода с энергией ионизации атомов других элементов. К какому элементу по этой характеристике водород ближе всего?
3.Проделайте то же для энергии сродства к электрону
4.Сравните направление поляризации ковалентной связи и степень окисления водорода в соединениях: а) BeH 2 ,CH 4 , NH 3 , H 2 O, HF; б) CH 4 , SiH 4 ,GeH 4 .
5.Запишите простейшую, молекулярную, структурную и пространственную формулу водорода. Какая из них чаще всего используется?
6.Часто говорят: " Водород легче воздуха". Что под этим подразумевается? В каких случаях это выражение можно понимать буквально, а в каких –нет?
7.Составьте структурные формулы гидридов калия и кальция, а также аммиака, сероводорода и бромоводорода.
8.Зная молярные теплоты плавления и парообразования водорода, определите значения соответствующих удельных величин.
9.Для каждой из четырех реакций, иллюстрирующих основные химические свойства водорода, составьте электронный баланс. Отметьте окислители и восстановители.
10.Определите массу цинка, необходимого для получения 4,48 л водорода лабораторным способом.
11.Определите массу и объем водорода, который можно получить из 30 м 3 смеси метана и паров воды, взятых в объемном отношении 1:2, при выходе 80 %.
12.Составьте уравнения реакций, протекающихпри взаимодействии водорода а) со фтором, б) с серой.
13.Приведенные ниже схемы реакций иллюстрируют основные химические свойства ионных гидридов:

а) MH + O 2 MOH (t ); б) MH + Cl 2 MCl + HCl (t );
в) MH + H 2 O MOH + H 2 ; г) MH + HCl(p) MCl + H 2
Здесь М – это литий, натрий, калий, рубидий или цезий. Составьте уравнения соответствующих реакций в случае, если М – натрий. Проиллюстрируйте уравнениями реакций химические свойства гидрида кальция.
14.Используя метод электронного баланса, составьте уравнения следующих реакций, иллюстрирующих восстановительные свойства некоторых молекулярных гидридов:
а) HI + Cl 2 HCl + I 2 (t ); б) NH 3 + O 2 H 2 O + N 2 (t ); в) CH 4 + O 2 H 2 O + CO 2 (t ).

10.2 Кислород

Как и в случае водорода, слово "кислород" является названием и химического элемента, и простого вещества. Кроме простого вещества "кислород" (дикислород) химический элемент кислородобразует еще одно простое вещество, называемое " озон" (трикислород). Это аллотропные модификации кислорода. Вещество кислород состоит из молекул кислорода O 2 , а вещество озон состоит из молекул озона O 3 .

а) Химический элемент кислород

В естественном ряду элементов порядковый номер кислорода – 8. В системе элементов кислород находится во втором периоде в VIA группе.
Кислород – самый распространенный элемент на Земле. В земной коре каждый второй атом – атом кислорода, то есть молярная доля кислорода в атмосфере, гидросфере и литосфереЗемли – около 50 %. Кислород (вещество) – составная часть воздуха. Объемная доля кислорода в воздухе –21 %. Кислород (элемент) входит в состав воды, многих минералов, а также растений и животных. В теле человека содержится в среднем 43 кг кислорода.
Природный кислород состоит из трех изотопов (16 О, 17 О и 18 О), из которых наиболее распространен самый легкий изотоп 16 О. Поэтому атомная масса кислорода близка к 16 Дн (15,9994 Дн).

б) Атом кислорода

Вам известны следующие характеристики атома кислорода.

Таблица 29. Валентные возможности атома кислорода

Валентное состояние

Примеры химических веществ

Al 2 O 3 , Fe 2 O 3 , Cr 2 O 3 *

–II
–I
0
+I
+II

H 2 O, SO 2 , SO 3 , CO 2 , SiO 2 , H 2 SO 4 , HNO 2 , HClO 4 , COCl 2 , H 2 O 2
O 2 **
O 2 F 2
OF 2

NaOH, KOH, Ca(OH) 2 , Ba(OH) 2
Na 2 O 2 , K 2 O 2 , CaO 2 , BaO 2

Li 2 O, Na 2 O, MgO, CaO, BaO, FeO, La 2 O 3

* Эти оксиды можно рассматривать и как ионные соединения.
** Атомы кислорода в молекуле не находятся в данном валентном состоянии; это лишь пример вещества со степенью окисления атомов кислорода, равной нулю
Большая энергия ионизации (как у водорода) исключает образование из атома кислорода простого катиона. Энергия сродства к электрону довольно велика (почти в два раза больше, чем у водорода), что обеспечивает большую склонность атома кислорода к присоединению электронов и способность образовывать анионы О 2A . Но энергия сродства к электрону у атома кислорода все же меньше, чем у атомов галогенов и даже других элементов VIA группы. Поэтому анионы кислорода (оксид-ионы ) существуют только в соединениях кислорода с элементами, атомы которых очень легко отдают электроны.
Обобществляя два неспаренных электрона, атом кислорода может образовать две ковалентные связи. Две неподеленные пары электронов из-за невозможности возбуждения могут вступать только в донорно-акцепторное взаимодействие. Таким образом, без учета кратности связи и гибридизации атом кислорода может находиться в одном из пяти валентных состояний (табл. 29).
Наиболее характерно для атома кислорода валентное состояние с W к = 2, то есть образование двух ковалентных связей за счет двух неспаренных электронов.
Очень высокая электроотрицательность атома кислорода (выше – только у фтора) приводит к тому, что в большинстве своих соединений кислород имеет степень окисления –II. Существуют вещества, в которых кислород проявляет и другие значения степени окисления, некоторые из них приведены в таблице 29 в качестве примеров, а сравнительная устойчивость показана на рис. 10.3.

в) Молекула кислорода

Экспериментально установлено, что двухатомная молекула кислорода О 2 содержит два неспаренных электрона. Используя метод валентных связей, такое электронное строение этой молекулы объяснить невозможно. Тем не менее, связь в молекуле кислорода близка по свойствам к ковалентной. Молекула кислорода неполярна. Межатомное расстояние (r o–o = 1,21 A = 121 нм) меньше, чем расстояние между атомами, связанными простой связью. Молярная энергия связи довольно велика и составляет 498 кДж/моль.

г) Кислород (вещество)

При обычных условиях кислород – газ без цвета и запаха. Твердый кислород плавится при 55 К (–218 °С), а жидкий кислород кипит при 90 К (–183 °С).
Межмолекулярные связи в твердом и жидком кислороде несколько более прочные, чем в водороде, о чем свидетельствует больший температурный интервал существования жидкого кислорода (36 °С) и большие, чем у водорода, молярные теплоты плавления (0,446 кДж/моль) и парообразования (6,83 кДж/моль).
Кислород незначительно растворим в воде: при 0 °С в 100 объемах воды (жидкой!) растворяется всего 5 объемов кислорода (газа!).
Высокая склонность атомов кислорода к присоединению электронов и высокая электроотрицательность приводят к тому, что кислород проявляет только окислительные свойства. Эти свойства особенно ярко проявляются при высокой температуре.
Кислород реагирует со многими металлами: 2Ca + O 2 = 2CaO, 3Fe + 2O 2 = Fe 3 O 4 (t );
неметаллами: C + O 2 = CO 2, P 4 + 5O 2 = P 4 O 10 ,
и сложными веществами: CH 4 + 2O 2 = CO 2 + 2H 2 O, 2H 2 S + 3O 2 = 2H 2 O + 2SO 2 .

Чаще всего в результате таких реакций получаются различные оксиды (см. гл. II § 5), но активные щелочные металлы, например натрий, сгорая, превращаются в пероксиды:

2Na + O 2 = Na 2 O 2 .

Структурная формула получившегося пероксида натрия (Na ) 2 ( O-O ).
Тлеющая лучинка, помещенная в кислород, вспыхивает. Это удобный и простой способ обнаружения чистого кислорода.
В промышленности кислород получают из воздуха путем ректификации (сложной разгонки), а в лаборатории – подвергая термическому разложению некоторые кислородсодержащие соединения, например:
2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2 (200 °С);
2KClO 3 = 2KCl + 3O 2 (150 °С, MnO 2 – катализатор);
2KNO 3 = 2KNO 2 + 3O 2 (400 °С)
и, кроме того, путем каталитического разложения пероксида водорода при комнатной температуре: 2H 2 O 2 = 2H 2 O + O 2­ (MnO 2 –катализатор).
Чистый кислород используют в промышленности для интенсификации тех процессов, в которых происходит окисление, и для создания высокотемпературного пламени. В ракетной технике в качестве окислителя используется жидкий кислород.
Огромное значение имеет кислород для поддержания жизнедеятельности растений, животных и человека. В обычных условиях человеку достаточно для дыхания кислорода воздуха. Но в условиях, когда воздуха не хватает, или он вообще отсутствует (в самолетах, при водолазных работах, в космических кораблях и т. п.), для дыхания готовят специальные газовые смеси, содержащие кислород. Применяют кислород и в медицине при заболеваниях, вызывающих затруднение дыхания.

д) Озон и его молекулы

Озон O 3 – вторая аллотропная модификация кислорода.
Трехатомная молекула озона имеет уголковую структуру, среднюю между двумя структурами, отображаемыми следующими формулами:

Озон – темно-синий газ с резким запахом. Из-за своей сильной окислительной активности он ядовит. Озон в полтора раза "тяжелее" кислорода и несколько больше, чем кислород, растворим в воде.
Озон образуется в атмосфере из кислорода при грозовых электрических разрядах:

3О 2 = 2О 3 ().

При обычной температуре озон медленно превращается в кислород, а при нагревании этот процесс протекает со взрывом.
Озон содержится в так называемом "озоновом слое" земной атмосферы, предохраняя все живое на Земле от вредного воздействия солнечного излучения.
В некоторых городах озон используется вместо хлора для дезинфекции (обеззараживания) питьевой воды.

Изобразите структурные формулы следующих веществ: OF 2 , H 2 O, H 2 O 2 , H 3 PO 4 , (H 3 O) 2 SO 4 , BaO, BaO 2 , Ba(OH) 2 . Назовите эти вещества. Опишите валентные состояния атомов кислорода в этих соединениях.
Определите валентность и степень окисления каждого из атомов кислорода.
2.Составьте уравнения реакций сгорания в кислороде лития, магния, алюминия, кремния, красного фосфора и селена (атомы селена окисляются до степени окисления +IV, атомы остальных элементов – до высшей степени окисления). К каким классам оксидов относятся продукты этих реакций?
3.Сколько литров озона можно получить (при нормальных условиях) а) из 9 л кислорода, б) из 8 г кислорода?

Вода – самое распространенное в земной коре вещество. Масса земной воды оценивается в 10 18 тонн. Вода – основа гидросферы нашей планеты, кроме того, она содержится в атмосфере, в виде льда образует полярные шапки Земли и высокогорные ледники, а также входит в состав различных горных пород. Массовая доля воды в человеческом организме составляет около 70 %.
Вода – единственное вещество, у которого во всех трех агрегатных состояниях есть свои особые названия.

Электронное строение молекулы воды (рис. 10.4 а ) нами было подробно изучено ранее (см. § 7.10).
Из-за полярности связей О–Н и уголковой формы молекула воды представляет собой электрический диполь .

Для характеристики полярности электрического диполя используется физическая величина, называемая "электрический момент электрического диполя" или просто "дипольный момент" .

В химии дипольный момент измеряют в дебаях: 1 Д = 3,34 . 10 –30 Кл. м

В молекуле воды – две полярные ковалентные связи, то есть два электрических диполя, каждый из которых обладает своим дипольным моментом (и ). Общий дипольный момент молекулы равен векторной сумме этих двух моментов (рис. 10.5):

(Н 2 О) = ,

где q 1 и q 2 – частичные заряды (+) на атомах водорода, а и – межатомные расстояния О – Н в молекуле. Так как q 1 = q 2 = q , а , то

Экспериментально определенные дипольные моменты молекулы воды и некоторых других молекул приведены в таблице.

Таблица 30. Дипольные моменты некоторых полярных молекул

Молекула

Молекула

Молекула

Учитывая дипольный характер молекулы воды, ее часто схематически изображают следующим образом:
Чистая вода – бесцветная жидкость без вкуса и запаха. Некоторые основные физические характеристики воды приведены в таблице.

Таблица 31. Некоторые физические характеристики воды

Большие значения молярных теплот плавления и парообразования (на порядок больше, чем у водорода и кислорода) свидетельствуют о том, что молекулы воды, как в твердом, так и в жидком веществе, довольно прочно связаны между собой. Эти связи называют "водородными связями" .

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ, ДИПОЛЬНЫЙ МОМЕНТ, ПОЛЯРНОСТЬ СВЯЗИ, ПОЛЯРНОСТЬ МОЛЕКУЛЫ.
Сколько валентных электронов атома кислорода принимает участие в образовании связей в молекуле воды?
2.При перекрывании каких орбиталей образуются связи между водородом и кислородом в молекуле воды?
3.Составьте схему образования связей в молекуле пероксида водорода H 2 O 2 . Что вы можете сказать о пространственном строении этой молекулы?
4.Межатомные расстояния в молекулах HF, HCl и HBr равны, соответственно, 0,92; 1,28 и 1,41. Используя таблицу дипольных моментов, рассчитайте и сравните между собой частичные заряды на атомах водорода в этих молекулах.
5.Межатомные расстояния S – H в молекуле сероводорода равны 1,34 , а угол между связями 92°. Определите значения частичных зарядов на атомах серы и водорода. Что вы можете сказать о гибридизации валентных орбиталей атома серы?

10.4. Водородная связь

Как вы уже знаете, из-за существенной разницы в электроотрицательности водорода и кислорода (2,10 и 3,50) у атома водорода в молекуле воды возникает большой положительный частичный заряд (q ч = 0,33 е ), а у атома кислорода – еще больший отрицательный частичный заряд (q ч = –0,66 е ). Вспомним также, что у атома кислорода есть две неподеленные пары электронов на sp 3 -гибридных АО. Атом водорода одной молекулы воды притягивается к атому кислорода другой молекулы, и, кроме того, полупустая 1s-АО атома водорода частично акцептирует пару электронов атома кислорода. В результате этих взаимодействий между молекулами возникает особый вид межмолекулярных связей –водородная связь.
В случае воды образование водородной связи может быть схематически представлено следующим образом:

В последней структурной формуле тремя точками (пунктирный штрих, а не электроны!) показана водородная связь.

Водородная связь существует не только между молекулами воды. Она образуется, если соблюдаются два условия:
1) в молекуле есть сильно полярная связь Н–Э (Э – символ атома достаточно электроотрицательного элемента),
2) в молекуле есть атом Э с большим отрицательным частичным зарядом и неподеленной парой электронов.
В качестве элемента Э может быть фтор, кислород и азот. Существенно слабее водородные связи, если Э – хлор или сера.
Примеры веществ с водородной связью между молекулами: фтороводород, твердый или жидкий аммиак, этиловый спирт и многие другие.

В жидком фтороводороде его молекулы связаны водородными связями в довольно длинные цепи, а в жидком и твердом аммиаке образуются трехмерные сетки.
По прочности водородная связь – промежуточная между химической связью и остальными видами межмолекулярных связей. Молярная энергия водородной связи обычно лежит в пределах от 5 до 50 кДж/моль.
В твердой воде (то есть в кристаллах льда) все атомы водорода связаны водородными связями с атомами кислорода, при этом каждый атом кислорода образует по две водородные связи (используя обе неподеленные пары электронов). Такая структура делает лед более " рыхлым"по сравнению с жидкой водой, где часть водородных связей оказывается разорванной, и молекулы получают возможность несколько плотнее " упаковаться". Эта особенность структуры льда объясняет, почему, в отличие от большинства других веществ, вода в твердом состоянии имеет меньшую плотность, чем в жидком. Максимальной плотности вода достигает при 4 °С –при этой температуре рвется достаточно много водородных связей, а тепловое расширение еще не очень сильно сказывается на плотности.
Водородные связи имеют очень большое значение в нашей жизни. Представим себе на минуту, что водородные связи перестали образовываться. Вот некоторые последствия:

  • вода при комнатной температуре стала бы газообразной, так как ее температура кипения понизилась бы до примерно –80 °С;
  • все водоемы стали бы промерзать со дна, так как плотность льда была бы больше плотности жидкой воды;
  • перестала бы существовать двойная спираль ДНК и многое другое.

Приведенных примеров достаточно, чтобы понять, что в этом случае природа на нашей планете стала бы совсем иной.

ВОДОРОДНАЯ СВЯЗЬ, УСЛОВИЯ ЕЕ ОБРАЗОВАНИЯ.
Формула этилового спирта СН 3 –СН 2 –О–Н. Между какими атомами разных молекул этого вещества образуются водородные связи? Составьте структурные формулы, иллюстрирующие их образование.
2.Водородные связи существуют не только в индивидуальных веществах, но и в растворах. Покажите с помощью структурных формул, как образуются водородные связи в водном растворе а) аммиака, б) фтороводорода, в) этанола (этилового спирта). = 2Н 2 О.
Обе эти реакции протекают в воде постоянно и с равной скоростью, следовательно, в воде существует равновесие: 2Н 2 О AН 3 О + ОН .
Это равновесие называется равновесием автопротолиза воды.

Прямая реакция этого обратимого процесса эндотермична, поэтому при нагревании автопротолиз усиливается, при комнатной же температуре равновесие сдвинуто влево, то есть концентрация ионов Н 3 О и ОН ничтожны. Чему же они равны?
По закону действующих масс

Но из-за того, что число прореагировавших молекул воды по сравнению с общим числом молекул воды незначительно, можно считать, что концентрация воды при автопротолизе практически не изменяется, и 2 = const Такая низкая концентрация разноименно заряженных ионов в чистой воде объясняет, почему эта жидкость, хоть и плохо, но все же проводит электрический ток.

АВТОПРОТОЛИЗ ВОДЫ, КОНСТАНТА АВТОПРОТОЛИЗА (ИОННОЕ ПРОИЗВЕДЕНИЕ) ВОДЫ.
Ионное произведение жидкого аммиака (температура кипения –33 °С) равно 2·10 –28 . Составьте уравнение автопротолиза аммиака. Определите концентрацию ионов аммония в чистом жидком аммиаке. Электропроводность какого из веществ больше, воды или жидкого аммиака?

1. Получение водорода и его горение (восстановительные свойства).
2. Получение кислорода и горение веществ в нем (окислительные свойства).

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

В нашей повседневной жизни есть вещи, которые настолько распространены, что почти каждый человек знает о них. Например, всем известно, что вода - жидкость, она легко доступна и не горит, следовательно, она может гасить огонь. Но вы когда-нибудь задумывались почему это так?

Источник изображения: pixabay.com

Вода состоит из атомов водорода и кислорода. Оба этих элемента поддерживают горение. Итак, исходя из общей логики (не научной) из этого следует, что вода тоже должна гореть, верно? Тем не менее этого не происходит.

Когда происходит горение?

Горение -это химический процесс, в котором молекулы и атомы объединяются, при этом выделяется энергия в виде тепла и света. Чтобы что-нибудь сжечь вам потребуется две вещи - топливо как источник горения (например, лист бумаги, кусок дерева и т. д.) и окислитель (содержащийся в земной атмосфере кислород является основным окислителем). Также нам потребуется тепло необходимое для достижения температуры воспламенения вещества, чтобы начался процесс горения.

Источник изображения auclip.ru

Например, рассмотрим процесс сжигания бумаги с использованием спичек. Бумага в этом случае будет являться топливом, газообразный кислород, содержащийся в воздухе будет выступать в качестве окислителя, а температура воспламенения будет достигаться благодаря горящей спичке.

Структура химического состава воды

Источник изображения: water-service.com.ua

Вода состоит из двух атомов водорода и одного атома кислорода. Ее химическая формула Н2О. Теперь интересно отметить, что два составных элемента воды действительно легко воспламеняющиеся вещества.

Почему водород является горючим веществом?

Атомы водорода имеют только один электрон и поэтому легко соединяется с другими элементами. Как правило в природе водород встречается в виде газа, молекулы которого состоят из двух атомов. Этот газ очень реактивный и быстро окисляется в присутствии окислителя, что делает его легковоспламеняемым.

Источник изображения: myshared.ru

При сгорании водорода происходит выделение большого количества энергии, поэтому его часто используют в сжиженном виде для запуска в космос космических аппаратов.

Кислород поддерживает горение

Как упоминалось ранее, для любого горения необходим окислитель. Есть много химических окислителей, в их числе кислород, озон, перекись водорода, фтор и т.д. В качестве основного окислителя, который в избытке содержится в атмосфере Земли является кислород. Он как правило является основным окислителем в большинстве пожаров. Именно поэтому для поддержания огня необходим постоянный приток кислорода.

Вода тушит огонь

Вода может гасить огонь по ряду причин, одной из которых является то, что это негорючая жидкость, несмотря на то, что состоит из двух элементов, которые могут по отдельности создать огненный ад.

Вода - самое распространенное средство тушения пожаров. Источник изображения: pixabay.com

Как мы уже говорили ранее, водород легко воспламеняется, все что для этого нужно это окислитель и температура воспламенения для начала реакции. Так как кислород является самым распространенным окислителем на Земле он быстро соединяется с атомами водорода с выделением большого количества света и тепла, при этом образуются молекулы воды. Вот как это происходит:

Обратите внимание на то, что смесь водорода с небольшим объемом кислорода или воздуха взрывоопасна и называется гремучим газом, она сгорает чрезвычайно быстро с громким хлопком, что воспринимается как взрыв. Катастрофа дирижабля "Гинденбург" в 1937 г. в Нью-Джерси унесла десятки жизней в результате возгорания водорода, которым была наполнена оболочка дирижабля. Легкая воспламеняемость водорода и его взрывоопасность в сочетании с кислородом - это главная причина того, что мы не получаем воду химическим путем в лабораториях.

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
В одних условиях водород проявляет металлические свойства (отдает электрон), в других - неметаллические (принимает электрон).
В природе встречаются изотопы водорода: 1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069; незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема H2). Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории :

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl 2 +H 2

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H 2 O → Ca(OH) 2 +H 2

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H 2 O → NaOH +H 2
СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

4.Действие щелочей на цинк или алюминий или кремний:
2Al +2NaOH +6H 2 O → 2Na +3H 2
Zn +2KOH +2H 2 O → K 2 +H 2
Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н 2 SO 4 или Na 2 SO 4 . На катоде образуется 2 объема водорода, на аноде - 1 объем кислорода.
2H 2 O → 2H 2 +О 2

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH 4 + H 2 O → CO + 3 H 2
CO + H 2 O → CO 2 + H 2

В сумме:
CH 4 + 2 H 2 O → 4 H 2 + CO 2

2. Пары воды через раскаленный кокс при 1000 о С:
С + H 2 O → CO + H 2
CO +H 2 O → CO 2 + H 2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH 4 → С + 2Н 2

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2Н 2 О + 2NaCl→ Cl 2 + H 2 + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н 2
  • Благодаря этому обобщению электронов молекула Н 2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н 2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН 4 , RН 3 , RН 2 , RН.

1) С галогенами образует галогеноводороды:
Н 2 + Cl 2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2Н 2 + О 2 → 2Н 2 О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н 2 + S → H 2 S (сероводород),

4) С азотом с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН 2 + N 2 → 2NН 3

5) С углеродом при высоких температурах:
2Н 2 + С → СН 4 (метан)

6) С щелочными и щелочноземельными металлами образует гидриды (водород – окислитель):
Н 2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H — построен подобно хлориду Na + Cl —

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H 2 → Cu + H 2 O
Fe 3 O 4 + 4H 2 → 3Fe + 4Н 2 О

8) с оксидом углерода (II):
CO + 2H 2 → CH 3 OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН 3 ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
С n Н 2n + Н 2 → С n Н 2n+2 .

Вверх