Сумма углов треугольника. Теорема о сумме углов треугольника. Теорема о сумме углов треугольника Сумма каких углов равна 180 градусов соответственно

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Вдогонку ко вчерашнему:

Играем с мозаикой под сказку по геометрии:

Жили-были треугольники. Такие похожие, что просто копия друг друга.
Стали они как-то рядышком на прямую линию. А так как были они все одного роста -
то и верхушки их были на одном уровне, под линеечку:

Треугольники любили кувыркаться и стоять на голове. Взобрались в верхний ряд и стали на уголок, как акробаты.
А мы уже знаем - когда они стоят верхушками ровно в линию,
то и подошвы у них тоже по линеечке - потому что если кто одного роста, то он и верх ногами одного роста!

Во всем они были одинаковые - и высота одинаковая, и подошвы один в один,
и горки по сторонам - одна круче, другая более пологая - по длине одинаковые
и наклон у них одинаковый. Ну просто близнецы! (только в разных одежках, у каждого свой кусочек пазла) .

- Где у треугольников одинаковые стороны? А где уголки одинаковые?

Постояли треугольники на голове, постояли, да и решили соскользнуть и улечься в нижнем ряду.
Заскользили и съехали как с горки; а горки-то у них одинаковые!
Вот и поместились аккурат между нижними треугольниками, без зазоров и никто никого не потеснил.

Огляделись треугольники и заметили интересную особенность.
Везде, где их углы вместе сошлись - непременно встретились все три угла:
самый большой - "угол-голова", самый острый угол и третий, средний по величине угол.
Они даже ленточки цветные повязали, что б сразу было заметно, где какой.

И получилось, что три угла треугольника, если их совместить -
составляют один большой угол, "угол нараспашку" - как обложка раскрытой книги,

______________________о ___________________

он так и называется: развернутый угол.

У любого треугольника - будто паспорт: три угла вместе равны развернутому углу.
Постучится к вам кто-нибудь: - тук-тук, я треугольник, пустите меня переночевать!
А вы ему - Предъяви-ка сумму углов в развернутом виде!
И сразу понятно - настоящий ли это треугольник или самозванец.
Не прошел проверку - Разворачивайся на сто восемьдесят градусов и ступай восвояси!

Когда говорят "повернуть на 180° - это значит развернуться задом наперед и
идти в обратном направлении.

То же самое в более привычных выражениях, без "жили были":

Совершим параллельный перенос треугольника АВС вдоль оси ОХ
на вектор АВ равный длине основания АВ.
Прямая, DF проходящая через вершины С и С 1 треугольников
параллельна оси ОХ, в силу того, что перпендикулярные оси ОХ
отрезки h и h 1 (высоты равных треугольников) равны.
Таким образом основание треугольника А 2 В 2 С 2 параллельно основанию АВ
и равно ему по длине (т.к. вершина С 1 смещена относительно С на величину АВ).
Треугольники А 2 В 2 С 2 и АВС равны по трем сторонам.
А стало быть углы ∠А 1 ∠В ∠С 2 , образующие развернутый угол, равны углам треугольника АВС.
=> Сумма углов треугольника равна 180°

С движениями - "трансляциями" так называемыми доказательство короче и наглядней,
на кусочках мозаики даже малышу может быть понятно.

Зато традиционное школьное:

опирающееся на равенство внутренних накрест-лежащих углов, отсекаемых на параллельных прямых

ценно тем, что дает представление о том - почему это так,
почему сумма углов треугольника равна развернутому углу?

Потому что иначе параллельные прямые не обладали бы привычными нашему миру свойствами.

Теоремы работают в обе стороны. Из аксиомы о параллельных прямых следует
равенство накрест лежащих и вертикальных углов, а из них - сумма углов треугольника.

Но верно и обратное: пока углы треугольника составляют 180° - существуют параллельные прямые
(такие, что через точку не лежащую на прямой можно провести единственную прямую || данной).
Если однажды в мире появится треугольник, у которого сумма углов не равна развернутому углу -
то параллельные перестанут быть параллельны, весь мир искривится и перекособочится.

Если полосы с орнаментом из треугольников расположить друг над другом -
можно покрыть все поле повторяющимся узором, будто пол плиткой:


можно обводить на такой сетке разные фигуры - шестиугольники, ромбы,
звездные многоугольники и получать самые разные паркеты


Замощение плоскости паркетами - не только занятная игра, но и актуальная математическая задача:

________________________________________ _______________________-------__________ ________________________________________ ______________
/\__||_/\__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\=/\__||_/ \__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\

Поскольку каждый четырехугольник - прямоугольник, квадрат, ромб и проч.,
может быть составлен из двух треугольников,
соответственно сумма углов четырехугольника: 180° + 180°= 360°

Одинаковые равнобедренные треугольники складываются в квадраты разными способами.
Маленький квадратик из 2-х частей. Средний из 4-х. И самый большой из 8-ми.
Сколько на чертеже фигур, состоящих из 6-ти треугольников?

Цели и задачи:

Образовательные:

  • повторить и обобщить знания о треугольнике;
  • доказать теорему о сумме углов треугольника;
  • практически убедиться в правильности формулировки теоремы;
  • научиться применять полученные знания при решении задач.

Развивающие:

  • развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания.

Воспитательные:

  • развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе.

Оборудование: мультимедийный проектор, треугольники из цветной бумаги, УМК «Живая математика», компьютер, экран.

Подготовительный этап: учитель дает задание ученику подготовить историческую справку о теореме «Сумма углов треугольника».

Тип урока : изучение нового материала.

Ход урока

I. Организационный момент

Приветствие. Психологический настрой учащихся на работу.

II. Разминка

С геометрической фигурой “треугольник” мы познакомились на предыдущих уроках. Давайте повторим, что нам известно о треугольнике?

Учащиеся работают по группам. Им предоставлена возможность общаться друг с другом, каждому самостоятельно строить процесс познания.

Что получилось? Каждая группа высказывает свои предложения, учитель записывает их на доске. Проводится обсуждение результатов:

Рисунок 1

III. Формулируем задачу урока

Итак, о треугольнике мы знаем уже достаточно много. Но не все. У каждого из вас на парте есть треугольники и транспортиры. Как вы думаете, какую задачу мы можем сформулировать?

Ученики формулируют задачу урока - найти сумму углов треугольника.

IV. Объяснение нового материала

Практическая часть (способствует актуализации знаний и навыков самопознания).Проведите измерения углов с помощью транспортира и найдите их сумму. Результаты запишите в тетрадь (заслушать полученные ответы). Выясняем, что сумма углов у всех получилась разная (так может получиться, потому что неточно приложили транспортир, небрежно выполнили подсчет и т.д.).

Выполните перегибания по пунктирным линиям и узнайте, чему еще равна сумма углов треугольника:

а)
Рисунок 2

б)
Рисунок 3

в)
Рисунок 4

г)
Рисунок 5

д)
Рисунок 6

После выполнения практической работы ученики формулируют ответ: Сумма углов треугольника равна градусной мере развернутого угла, т. е. 180°.

Учитель: В математике практическая работа дает возможность лишь сделать какое-то утверждение, но его нужно доказать. Утверждение, справедливость которого устанавливается путем доказательства, называется теоремой. Какую теорему мы можем сформулировать и доказать?

Ученики: Сумма углов треугольника равна 180 градусов.

Историческая справка: Свойство суммы углов треугольника было установлено еще в Древнем Египте. Доказательство, изложенное в современных учебниках, содержится в комментариях Прокла к «Началам» Евклида. Прокл утверждает, что это доказательство (рис. 8) было открыто еще пифагорейцами (5 в. до н. э.). В первой книге «Начал» Евклид излагает другое доказательство теоремы о сумме углов треугольника, которое легко понять при помощи чертежа (рис. 7):


Рисунок 7


Рисунок 8

Чертежи высвечиваются на экране через проектор.

Учитель предлагает с помощью чертежей доказать теорему.

Затем доказательство проводится с применением УМК «Живая математика» . Учитель на компьютере проецирует доказательство теоремы.

Теорема о сумме углов треугольника: «Сумма углов треугольника равна 180°»


Рисунок 9

Доказательство:

а)

Рисунок 10

б)

Рисунок 11

в)

Рисунок 12

Учащиеся в тетради делает краткую запись доказательства теоремы:

Теорема: Сумма углов треугольника равна 180°.


Рисунок 13

Дано: Δ АВС

Доказать: А + В + С = 180°.

Доказательство:

Что требовалось доказать.

V. Физ. минутка.

VI. Объяснение нового материала (продолжение)

Следствие из теоремы о сумме углов треугольника выводится учащимися самостоятельно, это способствует развитию умения формулировать собственную точку зрения, высказывать и аргументировать ее:

В любом треугольнике либо все углы острые, либо два острых угла, а третий тупой или прямой .

Если в треугольнике все углы острые, то он называется остроугольным .

Если один из углов треугольника тупой, то он называется тупоугольным .

Если один из углов треугольника прямой, то он называется прямоугольным .

Теорема о сумме углов треугольника позволяет классифицировать треугольники не только по сторонам, но и по углам. (По ходу введения видов треугольников учащимися заполняется таблица)

Таблица 1

Вид треугольника Равнобедренный Равносторонний Разносторонний
Прямоугольный
Тупоугольный
Остроугольный

VII. Закрепление изученного материала.

  1. Решить задачи устно:

(Чертежи высвечиваются на экране через проектор)

Задача 1. Найдите угол С.


Рисунок 14

Задача 2. Найдите угол F.


Рисунок 15

Задача 3. Найдите углы К и N.

Рисунок 16

Задача 4. Найдите углы P и T.


Рисунок 17

  1. Решить задачу самостоятельно № 223 (б, г).
  2. Решить задачу на доске и в тетрадях уч-ся №224.
  3. Вопросы: Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол.
  4. (выполняется устно) На карточках, имеющихся на каждом столе, изображены различные треугольники. Определите на глаз вид каждого треугольника.


Рисунок 18

  1. Найдите сумму углов 1, 2 и 3.


Рисунок 19

VIII. Итог урока.

Учитель: Что мы узнали? Для любого ли треугольника применима теорема?

IX. Рефлексия.

Передайте мне свое настроение, ребята! С обратной стороны треугольника изобразите свою мимику.


Рисунок 20

Домашнее задание: п.30 (1 часть), вопрос 1 гл. IV стр. 89 учебника; № 223 (а, в), № 225.

Вы, сможете доказать, что сумма углов в треугольнике, равна 180 градусам? и получил лучший ответ

Ответ от Top_ed[гуру]
Зачем доказывать то, что уже доказано очень-очень давно.
Теорема о сумме углов треугольника - классическая теорема евклидовой геометрии, утверждает что
Сумма углов треугольника равна 180°.
Пусть ABC - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.
Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.
Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD и секущей AB, то их сумма равна 180°. Теорема доказана.

Ответ от Boriska(c) [гуру]
смогу, только не помню как))


Ответ от Мурашкина [гуру]
Могу. А Вам срочно? ? Вы экзамен за пятый класс сдаёте? ? :))


Ответ от Ўрий Семыкин [гуру]
1. Это зависит от геометрии пространства. На Римановой плоскости > 180, на пл. Лобачевского < 180. На Эвклидовой - равенство.
2. Провести прямую через вершину параллельно одной из сторон и рассмотреть накрест лежащие углы, образоавнные двумя сторонами и доп прямой. Получится развернутый угол (180) равен сумме трех углов треугольника.

Доказательство существенно опирается на то, что можно провести только одну параллельную прямую. Есть куча геометрий, где это не так.


Ответ от Yuri [гуру]
Зачем доказывать доказанное?)) Разрежте квадрат на две чатсти, если вам хочется чего то новенького))


Ответ от Николай Евгеньевич [гуру]
Не могу.



Ответ от Алекс Бричка [эксперт]
да тут и доказывать то нечего, просто надо добавить углы друг к другу и все.


Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Вы, сможете доказать, что сумма углов в треугольнике, равна 180 градусам?

Теорема. Сумма внутренних углов треугольника равна двум прямым углам.

Возьмём какой-нибудь треугольник AВС (рис. 208). Обозначим его внутренние углы цифрами 1, 2 и 3. Докажем, что

∠1 + ∠2 + ∠3 = 180°.

Проведём через какую-нибудь вершину треугольника, например В, прямую МN параллельно АС.

При вершине В мы получили три угла: ∠4, ∠2 и ∠5. Их сумма составляет развёрнутый угол, следовательно, она равна 180°:

∠4 + ∠2 + ∠5 = 180°.

Но ∠4 = ∠1 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей АВ.

∠5 = ∠3 - это внутренние накрест лежащие углы при параллельных прямых МN и АС и секущей ВС.

Значит, ∠4 и ∠5 можно заменить равными им ∠1 и ∠3.

Следовательно, ∠1 + ∠2 + ∠3 = 180°. Теорема доказана.

2. Свойство внешнего угла треугольника.

Теорема. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

В самом деле, в треугольнике ABC (рис. 209) ∠1 + ∠2 = 180° - ∠3, но и ∠ВСD, внешний угол этого треугольника, не смежный с ∠1 и ∠2, также равен 180° - ∠3.

Таким образом:

∠1 + ∠2 = 180° - ∠3;

∠BCD = 180° - ∠3.

Следовательно, ∠1 + ∠2= ∠BCD.

Выведенное свойство внешнего угла треугольника уточняет содержание ранее доказанной теоремы о внешнем угле треугольника, в которой утверждалось только, что внешний угол треугольника больше каждого внутреннего угла треугольника, не смежного с ним; теперь же устанавливается, что внешний угол равен сумме обоих внутренних углов, не смежных с ним.

3. Свойство прямоугольного треугольника с углом в 30°.

Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.

Пусть в прямоугольном треугольнике АСВ угол В равен 30° (рис. 210). Тогда другой его острый угол будет равен 60°.

Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний.

Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.

Вверх