Все, что нужно знать об окружности. Вписанная и описанная окружности 1 определение окружности

Определение 2

Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

Рисунок 1. Вписанная окружность

Теорема 1 (об окружности, вписанной в треугольник)

Теорема 1

В любой треугольник можно вписать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Существование: Проведем окружность с центром в точке $O$ и радиусом $OK.\ $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M\ и\ L$. Так как $OM,OK\ и\ OL$ - перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O"$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

Приведем еще несколько фактов, связанных с понятием вписанной окружности:

    Не во всякий четырехугольник можно вписать окружность.

    В любом описанном четырехугольнике суммы противоположных сторон равны.

    Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Определение 3

Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

Определение 4

Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

Рисунок 3. Описанная окружность

Теорема 2 (об окружности, описанной около треугольника)

Теорема 2

Около любого треугольника можно описать окружность и притом только одну.

Доказательство.

Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

Рисунок 4. Иллюстрация теоремы 2

Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O"$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

Теорема доказана.

Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

Приведем еще несколько фактов, связанных с понятием описанной окружности:

    Около четырехугольника не всегда можно описать окружность.

    В любом вписанном четырехугольнике сумма противоположных углов равна ${180}^0$.

    Если сумма противоположных углов четырехугольника равна ${180}^0$, то около него можно описать окружность.

Пример задачи на понятия вписанной и описанной окружности

Пример 1

В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

Решение.

Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

Рисунок 5.

Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора ${BM}^2={BC}^2-{MC}^2,\ BM=\sqrt{{BC}^2-\frac{{AC}^2}{4}}=\sqrt{25-16}=\sqrt{9}=3$. $OM=OH=r$ -- искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4\ см$. Следовательно, $BH=5-4=1\ см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

\[{(3-r)}^2=r^2+1\] \ \ \

Ответ: $\frac{4}{3}$.

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

  • В прямоугольной системе координат уравнение окружности радиуса r с центром в точке C (x о;y о) имеет вид:
(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Окружностью называется геометрическое место точек плоскости, равноудаленных от фиксированной точки, называемой центром.

Пусть точка - центр, а точка
, - произвольная точка окружности. Тогда

где R называется радиусом окружности, или в развернутом виде

Уравнение (4) называется каноническим уравнением окружности.

Замечание. Если в уравнении (4) обозначить
,
и разделить обе части на
, получим уравнение
. Т.о. окружность есть частный случай эллипса с равными полуосями.

7.1.3. Гипербола

Гиперболой называется геометрическое место точек плоскости, для каждой из которых модуль разности расстояний от двух фиксированных точек, называемых фокусами , есть величина постоянная.

Пусть
, - фокусы, расстояние
,M – произвольная точка гиперболы. Тогда, согласно определения, имеем

, (5)

где а – заданная величина.

Введем систему координат, указанным ниже на рисунке способом.

тогда соотношение (5) после алгебраических преобразований и исключения иррациональности можно представить в виде:

(6)

которое и называется каноническим уравнением гиперболы. В данной системе координат и указанном уравнении (6) график гиперболы имеет вид:

Если же уравнение гиперболы имеет вид

(7)

то соответственно ее график имеет вид:

Параметры иназывают полуосями,- действительной,- явной. Параметр

(8)

называется эксцентриситетом . Он характеризует форму гиперболы.

Отметим некоторые свойства гиперболы.

1) Гипербола имеет, как минимум, две оси симметрии и центр симметрии .

Действительно, точка (0;0) при любом расположении графика гиперболы в канонической системе координат является центром симметрии. Роль осей симметрии играют оси ОХ и ОУ .

2) Гипербола пересекает одну из осей симметрии в двух точках, называемых вершинами , с другой же осью симметрии гипербола не пересекается .

Такие, на первом графике вершины гиперболы (6) расположены на оси ОХ, это точки
и
, на втором графике (7) - на осиОУ ,-это
и
.

3) Гипербола имеет асимптоты, то есть прямые, к которым гипербола неограниченно приближается , если точка, скользящая вдоль нее, уходит в бесконечность.

Для гиперболы с каноническим уравнением
асимптоты описываются уравнениями

и
. (9)

Для гиперболы, заданной уравнением
асимптоты задаются прямыми

. (10)

Фокусы гиперболы
(или
для
) расположены на одной оси с её вершинами. Здесь

. (11)

Оптическое свойство гиперболы. Луч, выходящий из одного из фокусов гиперболы, после своего отражения от кривой идет так, как - будто он вышел из второго фокуса.

7.1.4. Парабола

Параболой называется геометрическое место точек плоскости равноудаленных от фиксированной точки, называемой фокусом , и данной прямой, которая называется директрисой.

Пусть прямая l , - директриса, - фокус и удалён от директрисы на расстояние p , а точка М , - произвольная точка параболы. Тогда

Выберем систему координат указанным ниже образом.

.

Тогда уравнение параболы, после исключения иррациональности примет вид

,
(12)

которое и называется каноническим уравнением параболы . В данной системе координат и указанном уравнении (12) график параболы имеет вид:

Для найденного канонического уравнения параболы уравнение директрисы

,
(13)

а фокус расположен в точке
.

Отметим одно из свойств.

Парабола имеет одну ось симметрии.

В выбранной выше системе координат осью симметрии параболы является ОХ.

Замечание. 1. Если фокус имеет координаты
,а директриса описывается уравнением
, то уравнение параболы принимает вид

. (14)

Если же фокус расположить на оси 0y , то уравнение примет вид

или
, (15)

в зависимости от расположения директрисы (
или
, соответственно). Эти уравнения также называютсяканоническими . Отмеченные особенности позволяют однозначно определять расположение параболы и её характеристические признаки (координаты фокуса, уравнение директрисы).

Оптическое свойство параболы. Лучи, параллельные оси параболы, после отражения от кривой проходят через ее фокус.

Что такое единичная окружность . Единичная окружность -- это окружность с радиусом, равным 1, и с центром в начале координат. Вспомните, что уравнение окружности выглядит как x 2 +y 2 =1. Такая окружность может быть использована для нахождения некоторых "особых" тригонометрических соотношений, а также при построении графических изображений. С помощью нее и заключенной в ней линии можно оценивать и численные значения тригонометрических функций.

Запомните 6 тригонометрических соотношений. Помните, что

  • sinθ=противолежащий катет/гипотенуза
  • cosθ=прилежащий катет/гипотенуза
  • tgθ=противолежащий катет/прилежащий катет
  • cosecθ=1/sin
  • secθ=1/cos
  • ctgθ=1/tg.
  • Что такое радиан . Радиан -- одна из мер для определения величины угла. Один радиан -- это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса. Заметьте, что при этом величина и расположение окружности не играют никакой роли. Следует также знать, чему равно число радиан для полной окружности (360 градусов). Вспомните, что длина окружности равна 2πr, что превышает длину радиуса в 2π раза. Поскольку по определению 1 радиан -- это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Умейте перевести радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан=360 градусов
    • 1 радиан=(360/2π) градусов
    • 1 радиан=(180/π) градусов
    • 360 градусов=2π радиан
    • 1 градус=(2π/360) радиан
    • 1 градус=(π/180) радиан
  • Выучите "особые" углы. Эти углы в радианах составляют π/6, π/3, π/4, π/2, π и произведения данных величин (например, 5π/6)

    Изучите и запомните значения тригонометрических функций для особых углов. Для определения их величин вы должны взглянуть на единичную окружность. Вспомните об отрезке известной длины, заключенном в единичной окружности. Точка на окружности соответствует количеству радиан в образованном угле. Например, углу π/2 соответствует точка на окружности, радиус к которой образует с положительным горизонтальным радиусом угол величиной π/2. Для нахождения значения тригонометрической функции какого-либо угла определяются координаты точки, соответствующей этому углу. Гипотенуза всегда равна единице, поскольку она является радиусом круга, и так как любое число, поделенное на 1, равно самому себе, а противоположный катет равен длине вдоль оси Оy, отсюда следует, что значение синуса какого-либо угла -- это координата y соответствующей точки на окружности. Значение косинуса можно найти схожим образом. Косинус равен длине прилежащего катета, деленной на длину гипотенузы; поскольку последняя равна единице, а длина прилежащего катета равна координате x точки на окружности, отсюда следует, что косинус равен значению этой координаты. Найти тангенс немного сложнее. Тангенс угла прямоугольного треугольника равен противолежащему катету, деленному на прилежащий. В данном случае, в отличие от предыдущих, частное не является константой, поэтому вычисления несколько усложняются. Вспомним, что длина противолежащего катета равна координате y, а прилежащего -- координате x точки на единичной окружности; подставив эти значения, получим, что тангенс равен y/x. Поделив 1 на найденные выше значения, можно легко найти соответствующие обратные тригонометрические функции. Таким образом, можно рассчитать все основные тригонометрические функции:

    • sinθ=y
    • cosθ=x
    • tgθ=y/x
    • cosec=1/y
    • sec=1/x
    • ctg=x/y
  • Найдите и запомните значения шести тригонометрических функций для углов, лежащих на координатных осях , то есть углов, кратных π/2, таких как 0, π/2, π, 3π/2, 2π и т. д. Для точек круга, находящихся на координатных осях, это не представляет никаких проблем. Если точка лежит на оси Оx, синус равен нулю, а косинус -- 1 или -1, в зависимости от направления. Если же точка лежит на оси Оy, синус будет равняться 1 или -1, а косинус -- 0.

  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/6. Нанесите угол π/6 на единичную окружность. Вы знаете, как находить длины всех сторон особых прямоугольных треугольников (с углами 30-60-90 и 45-45-90) по известной длине одной из сторон, а поскольку π/6=30 градусов, данный треугольник является одним из особых случаев. Для него, как вы помните, короткий катет равен 1/2 гипотенузы, то есть координата y составляет 1/2, а длинный катет длиннее короткого в √3 раз, то есть равен (√3)/2, так что координата x будет (√3)/2. Таким образом, получаем точку на единичной окружности со следующими координатами: ((√3)/2,1/2). Пользуясь приведенными выше равенствами, находим:

    • sinπ/6=1/2
    • cosπ/6=(√3)/2
    • tgπ/6=1/(√3)
    • cosecπ/6=2
    • secπ/6=2/(√3)
    • ctgπ/6=√3
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/3. Угол π/3 отображается на окружности точкой, у которой координата x равна координате y угла π/6, а координата y такая же, как x для этого угла. Таким образом, точка имеет координаты (1/2, √3/2). В итоге получаем:

    • sinπ/3=(√3)/2
    • cosπ/3=1/2
    • tgπ/3=√3
    • cosecπ/3=2/(√3)
    • secπ/3=2
    • ctgπ/3=1/(√3)
  • Найдите и запомните значения 6 тригонометрических функций для особого угла π/4. Длина гипотенузы прямоугольного треугольника с углами 45-45-90 относится к длинам его катетов как √2 к 1, так же будут соотноситься и значения координат точки на единичной окружности. В итоге имеем:

    • sinπ/4=1/(√2)
    • cosπ/4=1/(√2)
    • tgπ/4=1
    • cosecπ/4=√2
    • secπ/4=√2
    • ctgπ/4=1
  • Определите, положительно или отрицательно значение функции. Все углы, принадлежащие одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку (одно быть положительным, второе -- отрицательным).
    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cosec, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.
  • Вверх