На каждый день. Open Library - открытая библиотека учебной информации Плоское напряженное состояние в точке

Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид

Геометрическая иллюстрация представлена на рис.1. При этом площадки х= const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид

Корни этого уравнения равны

(1)

Нумерация корней произведена для случая

Рис.1. Исходное плоское напряженное состояние.

Рис.2. Позиция главных напряжений

Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты: , , n х =0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:

Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х )-периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).

Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.

Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения

откуда получим

(5)

Сравнивая соотношения (4) и (5), находим, что

Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3).

Рис.3. Экстремальность касательных напряжений

Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул

.

После некоторых преобразований получим

Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения

Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с

Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.

ТЕНЗОР ДЕФОРМАЦИИ

Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.

Рис.4. Плоская деформация.

По определению относительная линейная деформация в точке М в направлении оси Ох равна

Из рис. 4 следует

Учитывая, что MN=dx, получим

В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения

справедливого при x <<1, окончательно для малой деформации получим

Угловая деформация определяется как сумма углов и (4). В случае малых деформаций

Для угловой деформации имеем

Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений

Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.

ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ

Лекция 15

Примером конструкции, всœе точки которой находятся в плоском напряженном состоянии, может служить тонкая пластинка, нагруженная по торцам силами, которые лежат в ее плоскости. Поскольку боковые поверхности пластинки свободны от напряжений, то в силу малости ее толщины можно считать, что и внутри пластинки на площадках, параллельных ее поверхности, напряжения пренебрежимо малы. Подобная ситуация возникает, к примеру, при нагружении валов и балок тонкостенного профиля.

В общем случае, говоря о плоском напряженном состоянии, мы имеем в виду не всю конструкцию, а только рассматриваемую точку ее элемента. Признаком того, что в данной точке напряженное состояние является плоским, служит наличие проходящей через нее площадки, на которой отсутствуют напряжения. Такими точками будут, в частности, точки свободной от нагрузок внешней поверхности тела, которые в большинстве случаев и являются опасными. Отсюда понятно внимание, ĸᴏᴛᴏᴩᴏᴇ уделяется анализу этого вида напряженного состояния.

При изображении элементарного параллелœепипеда, находящегося в плоском напряженном состоянии, достаточно показать одну из его ненагруженных граней, совместив ее с плоскостью чертежа (рис. 15.1).Тогда нагруженные грани элемента совместятся с границами показанной площадки. При этом система обозначений для напряжений и правила знаков остаются прежними – изображенные на рисунке компоненты напряженного состояния положительны. С учетом закона парности касательных напряжений

t xy = t yx , плоское напряженное состояние (ПНС) описывается тремя независимыми компонентами - s x , s y , t xy . .

НАПРЯЖЕНИЯ НА НАКЛОННЫХ ПЛОЩАДКАХ ПРИ ПЛОСКОМ НАПРЯЖЕННОМ СОСТОЯНИИ

Выделим из элемента͵ изображенного на рис. 15.1, треугольную призму, мысленно разрезав его наклонным сечением, перпендикулярным плоскости чертежа xOy . Положение наклонной площадки и связанных с ней осœей x 1 , y 1 зададим с помощью угла a, который будем считать положительным при повороте осœей против часовой стрелки.

Как и для описанного выше общего случая, показанные на рис. 15.2, напряжения можно считать действующими в одной точке, но на различно ориентированных площадках. Напряжения на наклонной площадке найдем из условия равновесия призмы, выразив их через заданные напряжения s x , s y , t xy на гранях, совпадающих с координатными плоскостями. Обозначим площадь наклонной грани dA , тогда площади координатных граней найдутся так:

dA x = dA cos a,

dA y = dA sin a.

Спроектируем действующие на гранях призмы силы на оси x 1 и y 1:

Сократив на общий множитель dA , и выполнив элементарные преобразования, получим

В случае если учесть, что

выражениям (15.1) можно придать следующий окончательный вид:

На рис. 15.3 вместе с исходным показан бесконечно малый элемент, ориентированный по осям x 1 ,y 1 . Напряжения на его гранях, нормальных к оси x 1 , определяются формулами (15.2). Чтобы найти нормальное напряжение на грани, перпендикулярной к оси y 1 , крайне важно вместо угла a подставить значение a + 90°:

Касательные напряжения и в повернутой системе координат x 1 y 1 подчиняются закону парности, т. е.

Сумма нормальных напряжений, как известно из анализа объемного напряженного состояния, является одним из его инвариантов и должна оставаться постоянной при замене одной системы координат на другую. В этом легко убедиться, сложив нормальные напряжения, определяемые из формул (15.2), (15.3):

ГЛАВНЫЕ НАПРЯЖЕНИЯ

Ранее мы установили, что площадки, на которых отсутствуют касательные напряжения, называют главными площадками, а напряжения на них – главными напряжениями. При плоском напряженном состоянии положение одной из главных площадок известно заранее - ϶ᴛᴏ площадка, на которой нет напряжений, ᴛ.ᴇ. совмещенная с плоскостью чертежа (см. рис.15.1). Найдем перпендикулярные ей главные площадки. Для этого положим равным нулю касательное напряжение в (15.1), откуда получим

Угол a 0 показывает направление нормали к главной площадке, или главное направление , в связи с этим его называют главным углом. Поскольку тангенс двойного угла является периодической функцией с периодом p/2 , то угол

a 0 + p/2 – тоже главный угол. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, всœего имеется три главных площадки, причем всœе они взаимно перпендикулярны. Исключение составляет лишь случай, когда главных площадок не три, а бесконечное множество – к примеру, при всœестороннем сжатии, когда любое выбранное направление является главным, а напряжения одинаковы на всœех проходящих через точку площадках.

Стоит сказать, что для нахождения главных напряжений можно воспользоваться первой из формул (15.2), подставляя вместо угла a последовательно значения a 0 и

Здесь учтено, что

Тригонометрические функции из выражений (15.5) можно исключить, если использовать известное равенство

А так же учесть формулу (15.4). Тогда получим

Знак плюс в формуле соответствует одному из главных напряжений, минус – другому. После их вычисления можно воспользоваться принятыми обозначениями для главных напряжений s 1 ,s 2 ,s 3 , учитывая, что s 1 – алгебраически наибольшее, а s 3 – алгебраически наименьшее напряжение. Иными словами, если найденные по выражениям (15.6) оба главных напряжения окажутся положительны, мы получим

В случае если оба напряжения будут отрицательны, будем иметь

Наконец, если выражение (15.6) даст значения напряжений с разными знаками, то главные напряжения будут равны

НАИБОЛЬШИЕ ЗНАЧЕНИЯ НОРМАЛЬНЫХ И КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ

В случае если мысленно поворачивать оси x 1 y 1 и связанный с ними элемент (см. рис. 15.3), напряжения на его гранях будут меняться, и при некотором значении угла a нормальное напряжение достигнет максимума. Поскольку сумма нормальных напряжений на взаимно перпендикулярных площадках остается величиной постоянной, то напряжение будет в данный момент наименьшим.

Чтобы найти это положение площадок, нужно исследовать на экстремум выражение , рассматривая его как функцию аргумента a:

Сравнив выражение в скобках с (15.2), приходим к выводу, что на искомых площадках равны нулю касательные напряжения. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, нормальные напряжения достигают экстремальных значений именно на главных площадках.

Чтобы найти наибольшее по величинœе касательное напряжение, примем в качестве исходных главные площадки, совместив оси x и y с главными направлениями. Формулы (15.1), в которых угол a будет теперь отсчитываться от направления s 1 , получат вид:

Из последнего выражения следует, что касательные напряжения достигают наибольших значений на площадках, повернутых к главным на 45°, когда

sin 2a = ±1 . Их максимальное значение при этом равно

Отметим, что формула (15.8) справедлива и в том случае, когда

ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ. КРУГИ МОРА

Формулы (15.7), по которым определяются напряжения на площадке, повернутой на некоторый угол α по отношению к главной, имеют наглядную геометрическую интерпретацию. Считая для определœенности оба главных напряжения положительными, введем следующие обозначения:

Тогда выражения (15.7) приобретут вполне узнаваемый вид параметрического уравнения окружности в координатах σ и τ :

Индекс “ α “, в обозначениях подчеркивает, что напряжения находятся на площадке, повернутой к исходной на данный угол. Величина а определяет положение центра окружности на оси σ; радиус окружности равен R . Изображенная на рис. 15.5 круговая диаграмма напряжений по сложившейся традиции принято называть кругом Мора, по имени предложившего ее известного немецкого ученого Отто Мора (1835 – 1918 ᴦ.ᴦ.). Направление вертикальной оси выбрано с учетом знака τ α в (15.10). Каждому значению угла α соответствует изображающая точка K α, τ α ) на окружности, координаты которой равны напряжениям на повернутой площадке. Взаимно перпендикулярным площадкам, у которых угол поворота отличается на 90˚, соответствуют точки K и K ’, лежащие на противоположных концах диаметра.

Здесь учтено, что

поскольку формулы (15.2) и (15.7) при изменении угла на 90 0 дают знак касательного напряжения в повёрнутой системе координат, у которой одна из осœей совпадает по направлению с исходной осью, а другая противоположна по направлению (рис. 15.5)

В случае если в качестве исходных площадок выступают главные, ᴛ.ᴇ. известна величина σ 1 и σ 2 , круг Мора легко строится по точкам 1 и 2. Луч, проведённый из центра круга под углом 2a к горизонтальной оси, в пересечении с окружностью даст изображающую точку, координаты которой равны искомым напряжениям на повёрнутой площадке. При этом, удобнее пользоваться так называемым полюсом круга, направляя из него луч под углом a. Из очевидного соотношения между радиусом и диаметром круга, полюс, обозначаемый на чертеже буквой A , будет в данном случае совпадать с точкой 2. В общем случае полюс находится на пересечении нормалей к исходным площадкам. В случае если исходные площадки не являются главными, круг Мора строится следующим образом: на плоскость σ - t наносятся изображающие точки K x ,t xy ) и K ’(σ y ,-t xy ), соответствующие вертикальной и горизонтальной исходным площадкам. Соединяя точки прямой, в пересечении с осью σ находим центр круга, после чего строится сама круговая диаграмма. Пересечение окружности с горизонтальной осью даст значение главных напряжений, а радиус будет равен наибольшему касательному напряжению. На рис. 15.7 показан круг Мора, построенный по исходным площадкам, не являющимся главными. Полюс A находится на пересечении нормалей к исходным площадкам KA и K A . Луч AM , проведённый из полюса под углом a к горизонтальной оси, в пересечении с окружностью даст изображающую точку M (σ a ,t a), координаты которой представляют собой напряжения на интересующей нас площадке. Лучи, проведённые из полюса в точки 1 и 2, покажут главные углы a 0 и a 0 +90 0 . Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, круги Мора являются удобным графическим средством анализа плоского напряжённого состояния.

б) Напряжение на грани элемента͵ повёрнутого на 45 0 , найдём по (15.1)

Нормальное напряжение на перпендикулярной площадке

(a = 45 0 +90 0) будет равно

в) Наибольшие касательные напряжения найдём по (15.8)

2. Графическое решение.

Построим круг Мора по изображающим точкам K (160,40) и K ’ (60, -40)

Полюс круга A найдем на пересечении нормалей к исходным площадкам.

Круг пересечёт горизонтальную ось в точках 1 и 2. Точка 1 соответствует главному напряжению σ 1 =174 МПа, точка 2 – значению главного напряжения σ 2 = 46 МПа. Луч, проведенный из полюса A через точки 1 и 2, покажет значение главных углов. Напряжения на площадке, повёрнутой на 45 0 к исходной, равны координатам изображающей точки M , находящейся на пересечении окружности с лучом, проведенным из полюса A под углом 45 0 . Как видим, графическое решение задачи анализа напряжённого состояния совпадает с аналитическим.

Лекция 15

Примером конструкции, все точки которой находятся в плоском напряженном состоянии, может служить тонкая пластинка, нагруженная по торцам силами, которые лежат в ее плоскости. Поскольку боковые поверхности пластинки свободны от напряжений, то в силу малости ее толщины можно считать, что и внутри пластинки на площадках, параллельных ее поверхности, напряжения пренебрежимо малы. Подобная ситуация возникает, например, при нагружении валов и балок тонкостенного профиля.

В общем случае, говоря о плоском напряженном состоянии, мы имеем в виду не всю конструкцию, а только рассматриваемую точку ее элемента. Признаком того, что в данной точке напряженное состояние является плоским, служит наличие проходящей через нее площадки, на которой отсутствуют напряжения. Такими точками будут, в частности, точки свободной от нагрузок внешней поверхности тела, которые в большинстве случаев и являются опасными. Отсюда понятно внимание, которое уделяется анализу этого вида напряженного состояния.

При изображении элементарного параллелепипеда, находящегося в плоском напряженном состоянии, достаточно показать одну из его ненагруженных граней, совместив ее с плоскостью чертежа (рис. 15.1).Тогда нагруженные грани элемента совместятся с границами показанной площадки. При этом система обозначений для напряжений и правила знаков остаются прежними – изображенные на рисунке компоненты напряженного состояния положительны. С учетом закона парности касательных напряжений

t xy = t yx , плоское напряженное состояние (ПНС) описывается тремя независимыми компонентами - s x , s y , t xy . .

НАПРЯЖЕНИЯ НА НАКЛОННЫХ ПЛОЩАДКАХ ПРИ ПЛОСКОМ НАПРЯЖЕННОМ СОСТОЯНИИ

Выделим из элемента, изображенного на рис. 15.1, треугольную призму, мысленно разрезав его наклонным сечением, перпендикулярным плоскости чертежа xOy . Положение наклонной площадки и связанных с ней осей x 1 , y 1 зададим с помощью угла a, который будем считать положительным при повороте осей против часовой стрелки.

Как и для описанного выше общего случая, показанные на рис. 15.2, напряжения можно считать действующими в одной точке, но на различно ориентированных площадках. Напряжения на наклонной площадке найдем из условия равновесия призмы, выразив их через заданные напряжения s x , s y , t xy на гранях, совпадающих с координатными плоскостями. Обозначим площадь наклонной грани dA , тогда площади координатных граней найдутся так:

dA x = dA cos a,

dA y = dA sin a.

Спроектируем действующие на гранях призмы силы на оси x 1 и y 1:

Сократив на общий множитель dA , и выполнив элементарные преобразования, получим



Если учесть, что

выражениям (15.1) можно придать следующий окончательный вид:

На рис. 15.3 вместе с исходным показан бесконечно малый элемент, ориентированный по осям x 1 ,y 1 . Напряжения на его гранях, нормальных к оси x 1 , определяются формулами (15.2). Чтобы найти нормальное напряжение на грани, перпендикулярной к оси y 1 , необходимо вместо угла a подставить значение a + 90°:

Касательные напряжения и в повернутой системе координат x 1 y 1 подчиняются закону парности, т. е.

Сумма нормальных напряжений, как известно из анализа объемного напряженного состояния, является одним из его инвариантов и должна оставаться постоянной при замене одной системы координат на другую. В этом легко убедиться, сложив нормальные напряжения, определяемые из формул (15.2), (15.3):

ГЛАВНЫЕ НАПРЯЖЕНИЯ

Ранее мы установили, что площадки, на которых отсутствуют касательные напряжения, называют главными площадками, а напряжения на них – главными напряжениями. При плоском напряженном состоянии положение одной из главных площадок известно заранее – это площадка, на которой нет напряжений, т.е. совмещенная с плоскостью чертежа (см. рис.15.1). Найдем перпендикулярные ей главные площадки. Для этого положим равным нулю касательное напряжение в (15.1), откуда получим

Угол a 0 показывает направление нормали к главной площадке, или главное направление , поэтому его называют главным углом. Поскольку тангенс двойного угла является периодической функцией с периодом p/2 , то угол

a 0 + p/2 – тоже главный угол. Таким образом, всего имеется три главных площадки, причем все они взаимно перпендикулярны. Исключение составляет лишь случай, когда главных площадок не три, а бесконечное множество – например, при всестороннем сжатии, когда любое выбранное направление является главным, а напряжения одинаковы на всех проходящих через точку площадках.

Для нахождения главных напряжений можно воспользоваться первой из формул (15.2), подставляя вместо угла a последовательно значения a 0 и

Здесь учтено, что

Тригонометрические функции из выражений (15.5) можно исключить, если использовать известное равенство

А так же учесть формулу (15.4). Тогда получим

Знак плюс в формуле соответствует одному из главных напряжений, минус – другому. После их вычисления можно воспользоваться принятыми обозначениями для главных напряжений s 1 ,s 2 ,s 3 , учитывая, что s 1 – алгебраически наибольшее, а s 3 – алгебраически наименьшее напряжение. Иными словами, если найденные по выражениям (15.6) оба главных напряжения окажутся положительны, мы получим

Если оба напряжения будут отрицательны, будем иметь

Наконец, если выражение (15.6) даст значения напряжений с разными знаками, то главные напряжения будут равны

НАИБОЛЬШИЕ ЗНАЧЕНИЯ НОРМАЛЬНЫХ И КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ

Если мысленно поворачивать оси x 1 y 1 и связанный с ними элемент (см. рис. 15.3), напряжения на его гранях будут меняться, и при некотором значении угла a нормальное напряжение достигнет максимума. Поскольку сумма нормальных напряжений на взаимно перпендикулярных площадках остается величиной постоянной, то напряжение будет в этот момент наименьшим.

Чтобы найти это положение площадок, нужно исследовать на экстремум выражение , рассматривая его как функцию аргумента a:

Сравнив выражение в скобках с (15.2), приходим к выводу, что на искомых площадках равны нулю касательные напряжения. Таким образом, нормальные напряжения достигают экстремальных значений именно на главных площадках.

Чтобы найти наибольшее по величине касательное напряжение, примем в качестве исходных главные площадки, совместив оси x и y с главными направлениями. Формулы (15.1), в которых угол a будет теперь отсчитываться от направления s 1 , получат вид:

Из последнего выражения следует, что касательные напряжения достигают наибольших значений на площадках, повернутых к главным на 45°, когда

sin 2a = ±1 . Их максимальное значение при этом равно

Отметим, что формула (15.8) справедлива и в том случае, когда

ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ. КРУГИ МОРА

Формулы (15.7), по которым определяются напряжения на площадке, повернутой на некоторый угол α по отношению к главной, имеют наглядную геометрическую интерпретацию. Считая для определенности оба главных напряжения положительными, введем следующие обозначения:

Тогда выражения (15.7) приобретут вполне узнаваемый вид параметрического уравнения окружности в координатах σ и τ :

Индекс “ α “, в обозначениях подчеркивает, что напряжения находятся на площадке, повернутой к исходной на этот угол. Величина а определяет положение центра окружности на оси σ; радиус окружности равен R . Изображенная на рис. 15.5 круговая диаграмма напряжений по сложившейся традиции называется кругом Мора, по имени предложившего ее известного немецкого ученого Отто Мора (1835 – 1918 г.г.). Направление вертикальной оси выбрано с учетом знака τ α в (15.10). Каждому значению угла α соответствует изображающая точка K α, τ α ) на окружности, координаты которой равны напряжениям на повернутой площадке. Взаимно перпендикулярным площадкам, у которых угол поворота отличается на 90˚, соответствуют точки K и K ’, лежащие на противоположных концах диаметра.

Здесь учтено, что

поскольку формулы (15.2) и (15.7) при изменении угла на 90 0 дают знак касательного напряжения в повёрнутой системе координат, у которой одна из осей совпадает по направлению с исходной осью, а другая противоположна по направлению (рис. 15.5)

Если в качестве исходных площадок выступают главные, т.е. известна величина σ 1 и σ 2 , круг Мора легко строится по точкам 1 и 2. Луч, проведённый из центра круга под углом 2a к горизонтальной оси, в пересечении с окружностью даст изображающую точку, координаты которой равны искомым напряжениям на повёрнутой площадке. Однако, удобнее пользоваться так называемым полюсом круга, направляя из него луч под углом a. Из очевидного соотношения между радиусом и диаметром круга, полюс, обозначаемый на чертеже буквой A , будет в данном случае совпадать с точкой 2. В общем случае полюс находится на пересечении нормалей к исходным площадкам. Если исходные площадки не являются главными, круг Мора строится следующим образом: на плоскость σ - t наносятся изображающие точки K x ,t xy ) и K ’(σ y ,-t xy ), соответствующие вертикальной и горизонтальной исходным площадкам. Соединяя точки прямой, в пересечении с осью σ находим центр круга, после чего строится сама круговая диаграмма. Пересечение окружности с горизонтальной осью даст значение главных напряжений, а радиус будет равен наибольшему касательному напряжению. На рис. 15.7 показан круг Мора, построенный по исходным площадкам, не являющимся главными. Полюс A находится на пересечении нормалей к исходным площадкам KA и K A . Луч AM , проведённый из полюса под углом a к горизонтальной оси, в пересечении с окружностью даст изображающую точку M (σ a ,t a), координаты которой представляют собой напряжения на интересующей нас площадке. Лучи, проведённые из полюса в точки 1 и 2, покажут главные углы a 0 и a 0 +90 0 . Таким образом, круги Мора являются удобным графическим средством анализа плоского напряжённого состояния.

б) Напряжение на грани элемента, повёрнутого на 45 0 , найдём по (15.1)

Нормальное напряжение на перпендикулярной площадке

(a = 45 0 +90 0) будет равно

в) Наибольшие касательные напряжения найдём по (15.8)

2. Графическое решение.

Построим круг Мора по изображающим точкам K (160,40) и K ’ (60, -40)

Полюс круга A найдем на пересечении нормалей к исходным площадкам.

Круг пересечёт горизонтальную ось в точках 1 и 2. Точка 1 соответствует главному напряжению σ 1 =174 МПа, точка 2 – значению главного напряжения σ 2 = 46 МПа. Луч, проведенный из полюса A через точки 1 и 2, покажет значение главных углов. Напряжения на площадке, повёрнутой на 45 0 к исходной, равны координатам изображающей точки M , находящейся на пересечении окружности с лучом, проведенным из полюса A под углом 45 0 . Как видим, графическое решение задачи анализа напряжённого состояния совпадает с аналитическим.

Напряженное и деформированное состояние

Различают три вида напряженного состояния:

1) линейное напряженное состояние - растяжение (сжатие) в одном направлении;

2) плоское напряженное состояние - растяжение (сжатие) по двум направлениям;

3) объемное напряженное состояние - растяжение (сжатие) по трем взаимно перпендикулярным направлениям.

Рассматривают бесконечно малый параллелепипед (кубик). На его гранях могут быть нормальные s и касательные t напряжения. При изменении положения "кубика" напряжения меняются. Можно найти такое положение, при котором нет касательных напряжений см. рис.

https://pandia.ru/text/78/374/images/image002_227.gif" align="left" width="337" height="217 src=">Разрежем элементарный параллелепипед (рис. а) наклонным сечением. Изображаем только одну плоскость. Рассматриваем элементарную треугольную призму (рис. б). Положение наклонной площадки определяется углом a. Если поворот от оси x против час. стр. (см. рис. б), то a>0.

Нормальные напряжения имеют индекс, соответствующий оси их направления. Касательные напряжения, обычно , имеют два индекса: первый соответствует направлению нормали к площадке, второй - направлению самого напряжения (к сожалению, встречаются и другие обозначения, и другой выбор осей координат, что приводит к изменению знаков в некоторых формулах).

Нормальное напряжение положительно, если оно растягивающее, касательное напряжение положительно, если оно стремится повернуть рассматриваемую часть элемента относительно внутренней точки по час. стр (для касательного напряжения в некоторых учебниках и вузах принято обратное).


Напряжения на наклонной площадке:

Закон парности касательных напряжений : если по площадке действует касательное напряжение, то по перпендикулярной к ней площадке будет действовать касательное напряжение, равное по величине и противоположное по знаку. (txz= - tzx)

В теории напряженного состояния различают две основные задачи.

Прямая задача . По известным главным напряжениям: s1= smax, s2= smin требуется определить для площадки, наклоненной под заданным углом (a) к главным площадкам, нормальные и касательные напряжения:

https://pandia.ru/text/78/374/images/image007_125.gif" width="219" height="33">

или .

Для перпендикулярной площадки:

.

Откуда видно, что sa+sb=s1+s2 - сумма нормальных напряжений по двум взаимно перпендикулярным площадкам инварианта (независима) по отношению к наклону этих площадок.

Как и в линейном напряженном состоянии максимальные касательные напряжения имеют место при a=±45о, т. е..gif" align="left" width="240" height="227">.gif" width="154" height="55 src=">.gif" align="left" width="253" height="176 src=">Если одно из главных напряжений окажется отрицательным, то их надо обозначать s1, s3, если оба отрицательны, то s2, s3.

Объемное напряженное состояние

Напряжения в любой площадке при известных главных напряжениях s1, s2, s3:

где a1, a2, a3 - углы между нормалью к рассматриваемой площадке и направлениями главных напряжений.

Наибольшее касательное напряжение: .

Оно действует по площадке параллельной главному напряжению s2 и наклоненной под углом 45о к главным напряжениям s1 и s3.

https://pandia.ru/text/78/374/images/image023_60.gif" width="171" height="48 src=">

https://pandia.ru/text/78/374/images/image025_53.gif" width="115" height="48 src="> (иногда называют главными касательными напряжениями).

Плоское напряженное состояние - частный случай объемного и тоже может быть представлено тремя кругами Мора, при этом одно из главных напряжений должно быть равно 0. Для касательных напряжений также, как и при плоском напряженном состоянии, действует закон парности : составляющие касательных напряжений по взаимно перпендикулярным площадкам, перпендикулярные к линии пересечения этих площадок, равны по величине и обратны по направлению.

https://pandia.ru/text/78/374/images/image027_53.gif" width="166" height="51 src=">;

Октаэдрическое нормальное напряжение равно среднему из трех главных напряжений.

https://pandia.ru/text/78/374/images/image029_49.gif" width="199" height="50">, Октаэдрическое касательное напряжение пропорционально геометрической сумме главных касательных напряжений. Интенсивность напряжений :

DIV_ADBLOCK135">


https://pandia.ru/text/78/374/images/image032_47.gif" width="177" height="49">

Изменение объема не зависит от соотношения между главными напряжениями, а зависит от суммы главных напряжений. Т. е. элементарный кубик получит такое же изменение объема, если к его граням будут приложены одинаковые средние напряжения: , тогда , где К= - модуль объемной деформации . При деформации тела, материал которого имеет коэффициент Пуассона m= 0,5 (например, резина) объем тела не меняется.

Потенциальная энергия деформации

При простом растяжении (сжатии) потенциальная энергия U=https://pandia.ru/text/78/374/images/image038_46.gif" width="95" height="47 src=">.gif" width="234" height="50 src="> или

Полная энергия деформации, накапливаемая в единице объема, может рассматриваться как состоящая из двух частей: 1) энергии uo, накапливаемой за счет изменения объема (т. е. одинакового изменения всех размеров кубика без изменения кубической формы) и 2) энергии uф, связанной с изменением формы кубика (т. е. энергии, расходуемой на превращение кубика в параллелепипед). u = uо + uф.

https://pandia.ru/text/78/374/images/image043_42.gif" width="389" height="50 src=">

https://pandia.ru/text/78/374/images/image045_41.gif" width="160" height="84 src=">. При повороте системы координат коэффициенты тензора меняются, сам тензор остается постоянным.

Три инварианта напряженного состояния:

https://pandia.ru/text/78/374/images/image047_39.gif" width="249" height="48">

ea - относительная деформация, ga - угол сдвига.

Та же аналогия сохраняется и для объемного состояния. Поэтому имеем инварианты деформированного состояния:

J1= ex + ey + ez;

J2= exey +eyez + ezex - https://pandia.ru/text/78/374/images/image051_31.gif" width="17 height=47" height="47">.gif" width="216" height="140 src="> - тензор деформаций .

ex, ey, ez, gxy, gyz, gzx - компоненты деформированного состояния.

Для осей, совпадающих с направлениями главных деформаций e1, e2, e3, тензор деформаций принимает вид: .

Теории прочности

В общем случае опасное напряженное состояние элемента конструкции зависит от соотношения между тремя главными напряжениями (s1,s2,s3). Т. е., строго говоря, для каждого соотношения нужно экспериментально определять величину предельного напряжения, что нереально. Поэтому были приняты такие методы расчета прочности, которые позволяли бы оценить степень опасности любого напряженного состояния по напряжению растяжения – сжатия. Они называются теориями прочности (теории предельных напряженных состояний).

1-ая теория прочности (теория наибольших нормальных напряжений): причиной наступления предельного напряженного состояния являются наибольшие нормальные напряжения. smax= s1£ [s]. Главный недостаток: не учитываются два других главных напряжения. Подтверждается опытом только при растяжении весьма хрупких материалов (стекло, гипс). В настоящее время практически не применяется.

2-ая теория прочности (теория наибольших относительных деформаций): причиной наступления предельного напряженного состояния являются наибольшие удлинения. emax= e1£ [e]..gif" width="63 height=47" height="47">, условие прочности: sэквIII= s1 - s3£ [s]. Основной недостаток – не учитывает влияние s2.

При плоском напряженном состоянии: sэквIII= £ [s]. При sy=0 получаем Широко используется для пластичных материалов.

4-я теория прочности (энергетическая теория): причиной наступления предельного напряженного состояния являются величина удельной потенциальной энергии изменения формы. uф£..gif" width="367" height="55 src=">..gif" width="166" height="57">. Используется при расчетах хрупких материалов, у которых допускаемые напряжения на растяжение и сжатие не одинаковы (чугун).

Для пластичных материалов = теория Мора превращается в 3-ю теорию.

Круг Мора (круг напряжений). Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Откладываем от оси s из центра С луч под углом 2a (a>0, то против час. стр.), находим точку D,

координаты которой: sa, ta. Можно графически решать как прямую, так и обратную задачи.

Чистый сдвиг

https://pandia.ru/text/78/374/images/image063_27.gif" width="48 height=47" height="47">, где Q - сила, действующая вдоль грани, F - площадь грани. Площадки, по которым действуют только касательные напряжения, называются площадками чистого сдвига. Касательные напряжения на них - наибольшие. Чистый сдвиг можно представить как одновременное сжатие и растяжение, происходящее по двум взаимно перпендикулярным направлениям. Т. е. это частный случай плоского напряженного состояния, при котором главные напряжения: s1= - s3 = t; s2= 0. Главные площадки составляют с площадками чистого сдвига угол 45о.

https://pandia.ru/text/78/374/images/image065_26.gif" width="16" height="48 src="> - относительный сдвиг или угол сдвига .

Закон Гука при сдвиге : g = t/G или t = G×g.

G - модуль сдвига или модуль упругости второго рода [МПа] - постоянная материала, характеризующая способность сопротивляться деформациям при сдвиге. (Е - модуль упругости, m- коэффициент Пуассона).

Потенциальная энергия при сдвиге: .

Удельная потенциальная энергия деформации при сдвиге: https://pandia.ru/text/78/374/images/image069_26.gif" width="63" height="53">.

Вся потенциальная энергия при чистом сдвиге расходуется только на изменение формы, изменение объема при деформации сдвига равно нулю.

Круг Мора при чистом сдвиге.

Кручение

https://pandia.ru/text/78/374/images/image072_23.gif" align="left" width="175" height="125 src=">Такой вид деформации, при котором в поперечных сечениях возникает только одни крутящие моменты - Мк. Знак крутящего момента Мк удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час. стр., то Мк>0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания - j. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания - закон плоских сечений . Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси..gif" width="71" height="49 src="> - полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше..gif" width="103" height="57 src="> - относительный угол закручивания ..gif" width="127 height=57" height="57">, [t] =, для пластичного материала за tпред принимается предел текучести при сдвиге tт, для хрупкого материала – tв – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении: qmax£[q] – допустимый угол закручивания.

Кручение бруса прямоугольного сечения

https://pandia.ru/text/78/374/images/image081_17.gif" width="46" height="46">Эпюры касательных напряжений прямоугольного сечения.

; , Jk и Wk - условно называют моментом инерции и моментом сопротивления при кручении. Wk= ahb2,

Jk= bhb3, Максимальные касательные напряжения tmax будут посредине длинной стороны, напряжения по середине короткой стороны: t= g×tmax, коэффициенты: a, b,g приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2, a=0,246; b=0,229; g=0,795.

Изгиб

https://pandia.ru/text/78/374/images/image085_18.gif" width="270" height="45">.

https://pandia.ru/text/78/374/images/image087_16.gif" width="71" height="53">, r - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя. Закон Гука при изгибе : , откуда (формула Навье): , Jx - момент инерции сечения относительно главной центральной оси, перпендикулярной плоскости изгибающего момента, EJx - жесткость при изгибе, https://pandia.ru/text/78/374/images/image091_15.gif" width="126" height="54">, Jx/ymax=Wx-момент сопротивления сечения при изгибе, .

https://pandia.ru/text/78/374/images/image094_14.gif" width="103 height=54" height="54">, где Sx(y) - статический момент относительно нейтральной оси той части площади, которая расположена ниже или выше слоя, отстоящего на расстоянии "y" от нейтральной оси; Jx - момент инерции всего поперечного сечения относительно нейтральной оси, b(y) - ширина сечения в слое, на котором определяются касательные напряжения.

https://pandia.ru/text/78/374/images/image096_14.gif" width="89" height="49 src=">, F=b×h, для круглого сечения:, F=p×R2, для сечения любой формы ,

k- коэфф., зависящий от формы сечения (прямоугольник: k= 1,5; круг - k= 1,33).

https://pandia.ru/text/78/374/images/image100_12.gif" align="left" width="244" height="85 src=">Действие отброшенной части заменяется внутренними силовыми факторами М и Q, которые определяются из уравнений равновесия. В некоторых вузах момент М>0 откладывается вниз, т. е. эпюра моментов строится на растянутых волокнах. При Q= 0 имеем экстремум эпюры моментов. Дифференциальные зависимости между М, Q и q : https://pandia.ru/text/78/374/images/image102_10.gif" width="187" height="54">.

Расчет на прочность при изгибе : два условия прочности, относящиеся к различным точкам балки: а) по нормальным напряжениям , (точки наиболее удаленные от С); б) по касательным напряжениям https://pandia.ru/text/78/374/images/image105_10.gif" width="96" height="51">, которые проверяют по б). В сечениях балок могут быть точки, где одновременно большие нормальные и большие касательные напряжения. Для этих точек находятся эквивалентные напряжения, которые не должны превышать допустимых. Условия прочности проверяются по различным теориям прочности

I-я: ; II-я: (при коэфф. Пуассона m=0,3); - применяются редко.

III-я:, IV-я:,

теория Мора: , (используется для чугуна, у которого допускаемое напряжение на растяжение ¹ – на сжатие).

Определение перемещений в балках при изгибе

https://pandia.ru/text/78/374/images/image113_9.gif" width="104" height="52 src=">, где r(х) - радиус кривизны изогнутой оси балки в сечении х, М(х) - изгибающий момент в том же сечении, EJ - жесткость балки. Из высшей математики известно: Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение изогнутой оси балки. - тангенс угла между осью х и касательной к изогнутой оси. Эта величина очень мала (прогибы балки малы) Þ ее квадратом пренебрегают и угол поворота сечения приравнивают тангенсу. Приближенное дифференциальное ур-ние изогнутой оси балки : . Если ось y направлена вверх, то знак (+). В некоторых вузах ось y направляется вниз Þ(-). Интегрируя дифф..gif" width="226" height="50 src="> - получаем ур-ние прогибов . Постоянные интегрирования С и D находятся из граничных условий, которые зависят от способов закрепления балки.

а" от начала координат, его умножают на множитель (х - а)0, который равен 1. Любую распределенную нагрузку продлевают до конца балки, а для ее компенсации прикладывают нагрузку обратного направления.

EJ= M(x) = RA×x – https://pandia.ru/text/78/374/images/image122_8.gif" width="79 height=49" height="49"> – P(x – a – b); интегрируем:

EJ = EJq0 + RA× – – M(x – a) + – P;

EJy =EJy0 + EJq0x + RA× – – M + https://pandia.ru/text/78/374/images/image132_8.gif" width="93" height="51 src=">.

Начальные параметры - то, что мы имеем в начале координат, т. е. для рис.: М0=0, Q0=RA, прогиб y0=0, угол поворота q0¹0. q0 находим из подстановки во второе уравнение условия закрепления правой опоры: x=a+b+c; y(x)=0.

Дифференциальные зависимости при изгибе :

; ; https://pandia.ru/text/78/374/images/image136_6.gif" width="56" height="48 src=">.

Определение перемещений способом фиктивной нагрузки . Сопоставляя уравнения:

https://pandia.ru/text/78/374/images/image138_5.gif" align="left" width="203" height="120 src="> и имеем аналогию, Þ определение прогибов можно свести к определению моментов от некоторой фиктивной (условной) нагрузки в фиктивной балке: . Момент от фиктивной нагрузки Мф после деления на EJ равен прогибу "y" в заданной балке от заданной нагрузки. Учитывая, что и , получаем, что угол поворота в заданной балке численно равен фиктивной поперечной силе в фиктивной балке. , . При этом должна быть полная аналогия в граничных условиях двух балок. Каждой заданной балке соответствует своя фиктивная балка.

Закрепление фиктивных балок выбирается из того условия, чтобы на концах балки и на опорах имелось полное соответствие между "y" и "q" в заданной балке и Мф и Qф в фиктивной балке. Если эпюры моментов как в действительной, так и в фиктивной балках строить со стороны растянутого волокна (т. е. положительный момент откладывать вниз), то линии прогибов в заданной балке совпадает с эпюрой моментов в фиктивной балке.

Статически неопределимые балки.

Статически неопределимыми называются системы, реакции в которых не могут быть определены из уравнений равновесия твердого тела. В таких системах больше связей, чем это необходимо для равновесия. Степень статической неопределимости балки (не имеющей промежуточных шарниров – неразрезные балки ) равна избыточному (лишнему) числу внешних связей (более трех).

https://pandia.ru/text/78/374/images/image120_7.gif" width="21" height="25 src=">.gif" width="20" height="25 src=">.gif" width="39" height="51 src="> + С;

EJy = RВ×https://pandia.ru/text/78/374/images/image129_6.gif" width="40" height="49 src="> + С×х + D..gif" width="39" height="49 src=">+ MA=0; находятся RA и MA.

лишнего" закрепления, называется основной системой . За "лишнюю" неизвестную можно взять любую из реакций. Приложив к основной системе заданные нагрузки добавляем условие, которое обеспечивает совпадение заданной балки и основной – уравнение совместности перемещений. Для рис.: yB=0, т. е. прогиб в точке В = 0. Решение этого уравнения возможно разными способами.

Способ сравнения перемещений . Определяется прогиб точки В (рис.) в основной системе под действием заданной нагрузки (q): yВq=лишней" неизвестной RB, и находится прогиб от действия RB: . Подставляем в уравнение совместности перемещений: yB= yВq += 0, т. е. += 0, откуда RB=https://pandia.ru/text/78/374/images/image153_4.gif" align="left" width="371" height="300 src=">Теорема о трех моментах . Используется при расчете неразрезных балок - балок на многих опорах, одна из которых неподвижна, остальные подвижны. Для перехода от статически неопределимой балки к статически определимой основной системе над –лишними опорами вставляются шарниры. Лишними неизвестные: моменты Mn, приложенные к концам пролетов над лишними опорами.

Строятся эпюры моментов для каждого пролета балки от заданной нагрузки, рассматривая каждый пролет, как простую балку на двух опорах. Для каждой промежуточной опоры "n" составляется уравнение трех моментов :

wn, wn+1–площади эпюр, an – расстояние от центра тяжести левой эпюры до левой опоры, bn+1 – расстояние от центра тяжести правой эпюры до правой опоры. Число уравнений моментов равно числу промежуточных опор. Совместное их решение позволяет найти неизвестные опорные моменты. Зная опорные моменты, рассматриваются отдельные пролеты и из уравнений статики находятся неизвестные опорные реакции. Если пролета всего два, то левый и правый моменты известны, т. к. это либо заданные моменты, либо они равны нулю. В результате получаем одно уравнение с одним неизвестным М1.

Общие методы определения перемещений

m" , которое вызвано действием силы обобщенной "n". Полное перемещение, вызванное несколькими силовыми факторами: DР=DРP+DРQ+DРM. Перемещения вызванные единичной силой или единичным моментом: d – удельное перемещение . Если единичная сила Р=1 вызвала перемещение dР, то полное перемещение вызванное силой Р, будет: DР=Р×dР. Если силовые факторы, действующие на систему, обозначить Х1,Х2,Х3 и т. д., то перемещение по направлению каждого из них:

где Х1d11=+D11; Х2d12=+D12; Хidmi=+Dmi. Размерность удельных перемещений: , Дж - джоули размерность работы 1Дж = 1Нм.

Работа внешних сил, дейст-щих на упругую систему: .

https://pandia.ru/text/78/374/images/image160_3.gif" width="307" height="57">,

k – коэффициент, учитывающий неравномерность распределения касательных напряжений по площади поперечного сечения, зависит от формы сечения.

На основании закона сохранения энергии: потенциальная энергия U=A.

D11– перемещение по направл. силы Р1 от действия силы Р1;

D12– перемещение по направл. силы Р1 от действия силы Р2;

D21– перемещение по направл. силы Р2 от действия силы Р1;

D22– перемещение по направл. силы Р2 от действия силы Р2.

А12=Р1×D12 – работа силы Р1 первого состояния на перемещении по ее направлению, вызванном силой Р2 второго состояния. Аналогично: А21=Р2×D21 – работа силы Р2 второго состояния на перемещении по ее направлению, вызванном силой Р1 первого состояния. А12=А21. Такой же результат получается при любом числе сил и моментов. Теорема о взаимности работ: Р1×D12=Р2×D21.

Работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния.

Теорема о взаимности перемещений (теорема Максвелла) Если Р1=1 и Р2=1, то Р1d12=Р2d21, т. е. d12=d21, в общем случае dmn=dnm.

Для двух единичных состояний упругой системы перемещение по направлению первой единичной силы, вызванное второй единичной силой, равно перемещению по направлению второй единичной силы, вызванному первой силой.

https://pandia.ru/text/78/374/images/image163_4.gif" width="104" height="27 src="> от действия единичной силы; 4) найденные выражения подставляют в интеграл Мора и интегрируют по заданным участкам. Если полученное Dmn>0, то перемещение совпадает с выбранным направлением единичной силы, если <0, то противоположно.

Для плоской конструкции:

https://pandia.ru/text/78/374/images/image165_3.gif" width="155" height="58">.

https://pandia.ru/text/78/374/images/image167_4.gif" width="81 height=43" height="43"> для случая, когда эпюра от заданной нагрузки имеет произвольное очертание, а от единичной – прямолинейное удобно определять графо-аналитическим способом, предложенным Верещагиным. , где W – площадь эпюры Мр от внешней нагрузки, yc– ордината эпюры от единичной нагрузки под центром тяжести эпюры Мр. Результат перемножения эпюр равен произведению площади одной из эпюр на ординату другой эпюры, взятой под центром тяжести площади первой эпюры. Ордината должна быть обязательно взята из прямолинейной эпюры. Если обе эпюры прямолинейны, то ординату можно взять из любой.

https://pandia.ru/text/78/374/images/image170_3.gif" width="119" height="50 src=">. Вычисление по этой формуле производится по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Сложную эпюру Мр разбивают на простые геометрические фигуры, для которых легче определить координаты центров тяжести. При перемножении двух эпюр, имеющих вид трапеций, удобно использовать формулу: . Эта же формула годится и для треугольных эпюр, если подставить соответствующую ординату = 0.

https://pandia.ru/text/78/374/images/image173_3.gif" width="71" height="48"> (для рис. , т. е. , хС=L/2).

глухой" заделки при равномерно распределенной нагрузке имеем вогнутую квадратичную параболу, для которой ; https://pandia.ru/text/78/374/images/image179_3.gif" width="145" height="51 src=">, хС=3L/4. Тоже можно получить, если эпюру представить разностью площади треугольника и площади выпуклой квадратичной параболы: . "Отсутствующая" площадь считается отрицательной.

Теорема Кастильяно . – перемещение точки приложения обобщенной силы по направлению ее действия равно частной производной от потенциальной энергии по этой силе. Пренебрегая влиянием на перемещение осевых и поперечных сил, имеем потенциальную энергию: , откуда .

Статически неопределимые системы – системы, силовые факторы в элементах которых не могут быть определены только из уравнений равновесия твердого тела. В таких системах число связей больше, чем необходимо для равновесия. Степень статической неопределимости : S = 3n – m, n – число замкнутых контуров в конструкции, m – число одиночных шарниров (шарнир, соединяющий два стержня, считается за один, соединяющий три стержня – за два и т. д.). Метод сил – в качестве неизвестных принимают силовые факторы. Последовательность расчета: 1) устанавливают степень статич. неопределимости; 2) путем удаления лишних связей заменяют исходную систему статически определимой – основной системой (таких систем может быть несколько, но при удалении лишних связей не должна нарушаться геометрическая неизменяемость конструкции); 3) основную систему загружают заданными силами и лишними неизвестными; 4) неизвестные усилия должны быть подобраны так, чтобы деформации исходной и основной систем не отличались. Т. е. реакции отброшенных связей должны иметь такие значения, при которых перемещения по их направлениям = 0. Канонические уравнения метода сил:

Эти уравнения являются дополнительными ур-ями деформаций, которые позволяют раскрыть статич. неопределимость. Число ур-ий = числу отброшенных связей, т. е. степени неопределимости системы.

dik – перемещение по направлению i, вызванное единичной силой действующей по направлению k. dii – главные, dik – побочные перемещения. По теореме о взаимности перемещений: dik=dki. Dip– перемещение по направлению связи i, вызванное действием заданной нагрузки (грузовые члены). Перемещения, входящие в канонические уравнения удобно определять по методу Мора.

Для этого к основной системе прикладывают единичные нагрузки Х1=1, Х2=1, Хn=1, внешнюю нагрузку и строят эпюры изгибающих моментов. По интегралу Мора находят: ; ; ….; ;

; ; ….; ;

; ; ….; .

Черта над М указывает на то, что эти внутренние усилия вызваны действием единичной силы.

Для систем, состоящих из прямолинейных элементов перемножение эпюр удобно производить по способу Верещагина. ; и т. д. WР – площадь эпюры Мр от внешней нагрузки, yСр– ордината эпюры от единичной нагрузки под центром тяжести эпюры Мр, W1 – площадь эпюры М1 от единичной нагрузки. Результат перемножения эпюр равен произведению площади одной из эпюр на ординату другой эпюры, взятой под центром тяжести площади первой эпюры.

Расчет плоских кривых брусьев (стержней)

К кривым брусьям относятся крюки, звенья цепей, арки и т. п. Ограничения: поперечное сечение имеет ось симметрии, ось бруса плоская кривая, нагрузка действует в той же плоскости. Различают брусья малой кривизны: h/R<1/5, большой кривизны: h/R³1/5. При изгибе брусьев малой кривизны нормальные напряжения рассчитывают по формуле Навье, как для балок с прямой осью: https://pandia.ru/text/78/374/images/image198_3.gif" width="115" height="55">,

rН– радиус нейтрального слоя, е=R – rН, R – радиус слоя, в котором расположены центры тяжести сечения. Нейтральная ось кривого бруса не проходит через центр тяжести сечения С. Она всегда расположена ближе к центру кривизны, чем центр тяжести сечения. , r=rН – y. Зная радиус нейтрального слоя можно определить расстояние "е" от нейтрального слоя до центра тяжести. Для прямоугольного сечения высотой h, с наружным радиусом R2 и внутренним R1: ; для разных сечений формулы приведены в справочной лит-ре. При h/R<1/2 независимо от формы сечения можно определять "е" по приближенной формуле: , где Jx – момент инерции сечения относительно оси, проходящей через его центр тяжести перпендикулярно плоскости кривизны бруса.

Нормальные напряжения в сечении распределяются по гиперболическому закону (у наружного края сечения меньше, у внутреннего больше). При действии еще и нормальной силы N: (здесь rН – радиус нейтрального слоя, который был бы при действии только момента М, т. е. при N=0, но в действительности при наличии продольной силы этот слой уже не является нейтральным). Условие прочности: , при этом рассматриваются крайние точки, в которых суммарные напряжения от изгиба и растяжения–сжатия будут наибольшие, т. е. y= – h2 или y= h1. Перемещения удобно определять методом Мора.

Устойчивость сжатых стержней. Продольный изгиб

Разрушение стержня может произойти не только потому, что будет нарушена прочность, но и оттого, что стержень не сохранит заданной формы. Например, изгиб при продольном сжатии тонкой линейки. Потеря устойчивости прямолинейной формы равновесия центрально сжатого стержня называется продольным изгибом . Упругое равновесие устойчиво , если деформированное тело при любом малом отклонении от состояния равновесия стремится вернуться к первоначальному состоянию и возвращается к нему при удалении внешнего воздействия. Нагрузка, превышение которой вызывает потерю устойчивости, называется критической нагрузкой Ркр (критической силой). Допускаема нагрузка [P]=Pкр/nу, nу – нормативный коэффициент запаса устойчивости..gif" width="111" height="51 src=">.gif" width="115 height=54" height="54"> – формула дает значение критической силы для стержня с шарнирно закрепленными концами. При различных закреплениях: , m – коэффициент приведения длины.

При шарнирном закреплении обоих концов стержня m=1; для стержня с заделанными концами m=0,5; для стержня с одним заделанным и другим свободным концом m=2; для стержня с одним заделанным и другим шарнирно закрепленным концом m=0,7.

Критическое сжимающее напр-ние.: , – гибкость стержня, – наименьший главный радиус инерции площади сечения стержня. Эти формулы справедливы только тогда, когда напряжения sкр£sпц– предел пропорциональности, т. е. в пределах применимости закона Гука. Формула Эйлера применима при гибкости стержня: , например, для стали Ст3 (С235) lкр»100. Для случая lформуле Ясинского : sкр= a - b×l, коэффициенты "a" и "b" в справочной лит-ре (Ст3: a=310МПа; b=1,14МПа).

Достаточно короткие стержни, для которых l, Fбрутто– полная площадь сечения,

(Fнетто=Fбрутто-Fослабл –площадь ослабленного сечения с учетом площади отверстий в сечении Fослабл, например, от заклепок). =sкр/nу, nу– нормативный коэф. запаса устойчивости. Допускаемое напряжение выражается через основное допускаемое напряжение [s], используемое при расчетах на прочность: =j×[s], j – коэффициент уменьшения допускаемого напряжения для сжатых стержней (коэффициент продольного изгиба). Значения j приведены в табл. в учебниках и зависят от материала стержня и его гибкости (например, для стали Ст3 при l=120 j=0,45).

При проектировочном расчете требуемой площади сечения на первом шаге принимают j1=0,5–0,6; находят: . Далее зная Fбрутто, подбирают сечение, определяют Jmin, imin и l, устанавливают по табл. фактическое j1I, если оно существенно отличается от j1, расчет повторяется при среднем j2= (j1+j1I)/2. В результате второй попытки находят j2I, сравнивают с предыдущем значением и т. д., пока не достигнуто достаточно близкое совпадение. Обычно требуется 2-3 попытки..

Зависимость между моментами инерции при повороте осей :

https://pandia.ru/text/78/374/images/image249_2.gif" width="17" height="47 src=">(Jx - Jy)sin2a + Jxycos2a ;

Угол a>0, если переход от старой системы координат к новой происходит против час. стр. Jy1 + Jx1= Jy + Jx

Экстремальные (максимальное и минимальное) значения моментов инерции называются главными моментами инерции . Оси, относительно которых осевые моменты инерции имеют экстремальные значения, называются главными осями инерции . Главные оси инерции взаимно перпендикулярны. Центробежные моменты инерции относительно главных осей = 0, т. е. главные оси инерции - оси, относительно которых центробежный момент инерции = 0. Если одна из осей совпадает или обе совпадают с осью симметрии, то они главные. Угол, определяющий положение главных осей: , если a0>0 Þ оси поворачиваются против час. стр. Ось максимума всегда составляет меньший угол с той из осей, относительно которой момент инерции имеет большее значение. Главные оси, проходящие через центр тяжести, называются главными центральными осями инерции . Моменты инерции относительно этих осей:

Jmax + Jmin= Jx + Jy. Центробежный момент инерции относительно главных центральных осей инерции равен 0. Если известны главные моменты инерции, то формулы перехода к повернутым осям:

Jx1=Jmaxcos2a + Jminsin2a; Jy1=Jmaxcos2a + Jminsin2a; Jx1y1=(Jmax - Jmin)sin2a;

Конечной целью вычисления геометрических характеристик сечения является определение главных центральных моментов инерции и положения главных центральных осей инерции. Радиус инерции - https://pandia.ru/text/78/374/images/image254_3.gif" width="85" height="32 src=">. Для сечений, имеющих более двух осей симметрии (например: круг, квадрат, кольцо и др.) осевые моменты инерции относительно всех центральных осей равны между собой, Jxy=0, эллипс инерции обращается в круг инерции.

s - нормальное напряжение [Па], 1Па (паскаль) = 1 Н/м2,

106Па = 1 МПа (мегапаскаль) = 1 Н/мм2

N - продольная (нормальная) сила [Н] (ньютон); F - площадь сечения [м2]

e - относительная деформация [безразмерная величина];

DL - продольная деформация [м] (абсолютное удлинение), L - длина стержня [м].

Закон Гука - s = Е×e

Е - модуль упругости при растяжении (модуль упругости 1-го рода или модуль Юнга) [МПа]. Для стали Е= 2×105МПа = 2×106 кг/см2 (в "старой" системе единиц).

(чем больше Е, тем менее растяжимый материал)

; - закон Гука

EF - жесткость стержня при растяжении (сжатии).

При растяжении стержня он "утоньшается", его ширина - а уменьшается на поперечную деформацию - Dа.

Относительная поперечная деформация.


Основные механические характеристики материалов

sп- предел пропорциональности, sт- предел текучести , sВ- предел прочности или временное сопротивление, sк- напряжение в момент разрыва.

Хрупкие материалы, напр., чугун разрушаются при незначительных удлинениях и не имеют площадки текучести, лучше сопротивляются сжатию, чем растяжению.

Допускаемое напряжение https://pandia.ru/text/78/374/images/image276_3.gif" align="left" width="173" height="264">напряжения по наклонной площадке:

Прямая задача…………………………………………………..3

Обратная задача…………………………………………………3

Объемное напряженное состояние……………………………4

Напряжения по октаэдрической площадке…………………..5

Деформации при объемном напряженном состоянии.

Обобщенный закон Гука ………………………………………6

Потенциальная энергия деформации…………………………7

Теории прочности………………………………………………9

Теория прочности Мора ………………………………………10

Круг Мора ………………………………………………………10

Чистый сдвиг……………………………………………………11

Закон Гука при сдвиге…………………………………………12

Кручение………………………………………………………..13

Кручение бруса прямоугольного сечения…………………….14

Изгиб……………………………………………………………15

формулой Журавского…………………………………………16

Расчет на прочность при изгибе………………………………18

Определение перемещений в балках при изгибе……………19

Дифференциальные зависимости при изгибе……………….20

Уравнение совместности перемещений……………………..22

Способ сравнения перемещений……………………………..22

Теорема о трех моментах……………………………………..22

Общие методы определения перемещений………………….24

Теорема о взаимности работ (теорема Бетли)……………….25

Теорема о взаимности перемещений (теорема Максвелла).. 26

Вычисление интеграла Мора способом Верещагина……….27

Теорема Кастильяно…………………………………………..28

Статически неопределимые системы………………………..29

Расчет плоских кривых брусьев (стержней)………………...31

Устойчивость сжатых стержней. Продольный изгиб………33

Геометрические характеристики плоских сечений…………36

Моменты инерции сечения…………………………………..37

Центробежный момент инерции сечения …………………..37

Моменты инерции сечений простой формы………………..38

Моменты инерции относительно параллельных осей……..39

Зависимость между моментами инерции при повороте

осей……………………………………………………………40

Моменты сопротивления…………………………………….42

Растяжение и сжатие…………………………………………43

Основные механические характеристики материалов…….45

При плоском напряженном состоянии в одной из площадок, проходящих через рассматриваемую точку, касательные и нормальные напряжения равны нулю. Совместим эту площадку с плоскостью чертежа и выделим из тела в окрестности этой точки бесконечно малую (элементарную) треугольную призму, боковые грани которой перпендикулярны к плоскости чертежа, а высота (в направлении, перпендикулярном к плоскости чертежа) равна основания призмы представляют собой прямоугольные треугольники (рис. 2.3, а).

Приложим к выделенной призме те же напряжения, которые действовали на нее до выделения ее из тела. В связи с тем, что все размеры выделенной призмы бесконечно малы, касательные и нормальные напряжения по ее боковым граням можно считать распределенными равномерно и равными напряжениям в площадках, проходящих параллельно ее граням.

Выберем систему координат, совместив оси и у (в плоскости чертежа) с гранями призмы (рис. 2.3, а). Обозначим напряжения, параллельные оси и - оси у.

Нормальные напряжения по боковой грани призмы, наклоненной под углом а к грани, по которой действуют напряжения обозначим

Примем следующее правило знаков. Растягивающее нормальное напряжение положительно, а сжимающее - отрицательно. Касательное напряжение по боковой грани призмы положительно, если изображающий его вектор стремится вращать призму по часовой стрелке относительно любой точки, лежащей на внутренней нормали к этой грани. Угол а положителен, если грань призмы (по которой действует напряжение ) для совмещения с гранью (по которой действует напряжение ) поворачивается на этот угол против часовой стрелки. На рис. 2.3, а все напряжения, а также угол а положительны.

Умножив каждое из напряжений на площадь грани, по которой оно действует, получим систему сосредоточенных сил Ту и Та, приложенных в центрах тяжести соответствующих граней (рис. 2.3, б):

Эти силы должны удовлетворять всем уравнениям равновесия, так как призма, выделенная из тела, находится в равновесии.

Составим следующие уравнения равновесия:

В уравнение (4.3) силы не входят, так как линии их действия проходят через точку (начало системы координат ).

Подставив в уравнение (4.3) выражения и Ту из равенств (1.3), получим

Следовательно, касательные напряжения по двум взаимно перпендикулярным площадкам равны по абсолютной величине и обратны по знаку. Эта связь между называется законом парности касательных напряжений.

Из закона парности касательных напряжений следует, что в двух взаимно перпендикулярных площадках касательные напряжения направлены либо к линии пересечения этих площадок (рис. 3.3, а), либо от нее (рис. 3.3, б).

Подставим в уравнения (2.3) и (3.3) выражения сил из равенств (1.3):

Сократим эти уравнения на , учитывая при этом, что (см. рис. 2.3, а):

Теперь заменим на [см. формулу (5.3)]:

Формулы (6.3) и (7.3) позволяют определять значения нормальных и касательных напряжений в любых площадках, проходящих через данную точку, если известны напряжения в любых двух проходящих через нее взаимно перпендикулярных площадках.

Определим по формуле (6.3) сумму нормальных напряжений в двух взаимно перпендикулярных площадках, для одной из которых угол а равен а для другой

т. е. сумма величин нормальных напряжений в двух взаимно перпендикулярных площадках есть величина постоянная. Следовательно, если в одной из таких площадок нормальные напряжения имеют максимальное значение, то в другой они имеют минимальное значение.

При исследовании напряженного состояния сначала определяют напряжения по трем взаимно перпендикулярным площадкам, проходящим через рассматриваемую точку тела.

Если одна из этих площадок оказывается свободной от напряжении, то напряженное состояние является плоским. Бесконечно малый элемент в форме параллелепипеда, выделенный из тела указанными тремя площадками и тремя другими, им параллельными, показан на рис. 4.3, с. Его принято изображать в виде прямоугольника (или квадрата), представляющего собой проекцию элемента на плоскость, совпадающую с площадкой, свободной от напряжений (рис. 4.3,б). Значения напряжений достаточно указывать на двух взаимно перпендикулярных боковых гранях параллелепипеда.

Если требуется показать напряжения, возникающие не в одной паре взаимно перпендикулярных площадок, проходящих через данную точку, а в нескольких, то соответствующие прямоугольники (или квадраты) могут изображаться, как это, например, показано на рис. 4.3, в.

По напряжениям в двух взаимно перпендикулярных площадках можно вычислить [с помощью формул (6.3) и (7.3)] напряжения в любых площадках; поэтому рисунок (например, 4.3, б, в), на котором показаны эти напряжения, можно рассматривать как изображение напряженного состояния в точке.

Любое напряженное состояние можно рассматривать как сумму нескольких напряженных состояний (принцип наложения напряжений). Так, например, напряженное состояние, показанное на рис. 5.3, а, можно рассматривать как сумму напряженных состояний, изображенных на рис. 5.3, б,в.


Вверх