Полимерные материалы: электронная проводимость полимерных соединений. Реферат Электропроводящие полимеры: структура, свойства, применение Распространённые используемые электропроводящие полимеры

Над созданием разнообразных "пластиковых" электронных устройств в
настоящее время работают немало компаний и исследовательских лабораторий. Об этом
компьютерная пресса, в том числе и наш еженедельник, писала уже не раз. Правда,
предлагаемые на сегодняшний день решения в большинстве своем предполагают некий
сплав новых и традиционных технологий. Например, одним из самых распространенных
подходов является нанесение полупроводниковых материалов на пластиковую подложку.
Однако на самом деле потенциально существует и другой вариант — использование
пластичных материаловс проводящими свойствами, а точнее, — проводящих полимеров.

Первые, самые важные результаты в данной области, по сути ставшие отправной точкой
для всех дальнейших исследований, были получены Хидеки Ширакавой (Hideki Shirakawa)
из Университета г. Цукуба (Япония), Аланом Хигером (Alan J. Heeger) из Калифорнийского
университета и Аланом Макдармидом (Alan G. MacDiarmid) из Университета Пенсильвании.
Причем, согласно легенде, открыты проводящие полимеры случайно: при проведении
реакции синтеза просто-напросто ошибся один из студентов Ширакавы. Ну а первое
сообщение о них появилось в 1977 г. в "Journal of Chemical Society".

Что же представляют собой проводящие полимеры? Если коротко, то основой для них служат высокомолекулярные вещества с молекулами, в которых имеются чередующиеся двойные связи. В чистом виде они не являются проводниками заряда, поскольку электроны в них локализованы вследствие участия в образовании сильных химических связей. Для освобождения электронов применяются различные примеси; после их ввода появляется возможность перемещения зарядов (электронов и дырок) вдоль молекулярной цепи.

Проводящие полимеры, полученные Хидеки Ширакавой на основе полиацетилена, имели удельную проводимость порядка 0,001—0,01 См/м, что приблизительно соответствует полупроводникам. В дальнейшем были синтезированы материалы с уровнем удельной проводимости 10000 См/м, которые уже можно условно назвать "плохими" проводниками.

Одним из следующих важных шагов в данном направлении стало получение в самом начале
90-х годов электролюминесцентных полимеров. Они также являются проводящими, а
излучение в них происходит за счет рекомбинации зарядов и дырок. К настоящему
времени такие полимеры уже находят широкое применение в электронной индустрии:
именно на их основе строятся дисплеи на органических светодиодах (OLED — Organic
Light-Emitting Display), рассматриваемые многими специалистами как очень серьезный
конкурент ЖК-дисплеям на рынке карманных устройств. В числе компаний, ведущих
разработки в данной области, — британская Cambridge Display Technology (www.cdtltd.co.uk ),
немецкая Covion Organic Semiconductors (www.covion.com ),
голландская Philips (www.research.philips.com ),
а также UNIAX (www.uniax.com ),
основанная в 1990 г. Аланом Хигером и проданная им в прошлом году концерну DuPont.

Что касается использования проводящих полимеров в микроэлектронных устройствах вместо традиционных полупроводниковых материалов, то тут особых сдвигов пока не наблюдается главным образом потому, что они еще не способны обеспечить достаточную производительность. (Хотя благодаря своей дешевизне и механическим свойствам такие материалы уже нашли достаточно широкое применение; один из простейших примеров — весьма распространенные несколько лет назад защитные фильтры для экранов мониторов.) Тем не менее немало специалистов по-прежнему предполагают, что когда-нибудь полимеры станут базовыми компонентами микроэлектроники и будут использоваться, скажем, в качестве соединений между вычислительными элементами, построенными из молекулярных массивов, что позволит на несколько порядков повысить степень интеграции и уровень быстродействия микросхем. Правда, для достижения подобного прогресса потребуется не один десяток лет.

Ну а в завершение хотелось бы сказать еще о факте, который, собственно, послужил
одним из толчков к написанию этой небольшой статьи: в 2000 г. ученые, открывшие
проводящие полимеры, — Ширакава, Хигер и Макдармид — стали лауреатами Нобелевской
премии по химии.

Изоляционные свойства, неспособность проводить электрический ток долгое время рассматривались как качества, естественным образом присущие большинству полимерных материалов. Действительно, именно изоляционные свойства полимеров являются их важнейшим достоинством, определяющим многочисленные практические применения.

Однако в последние двадцать лет были открыты новые полимерные материалы с электропроводностью, лишь ненамного уступающей электропроводности металлов. Их открытие стало настоящей сенсацией, поскольку могло повлечь за собой появление новых типов электронных и оптоэлектронных устройств, и положило начало исследованиям в области синтеза и изучения свойств подобных материалов. Исследователи должны решить два основных вопроса: 1) каков механизм проводимости полимерных соединений и 2) какова взаимосвязь между составом, строением мономера и проводимостью полимерного соединения.

Проводящие полимерные материалы делятся на две большие группы: полимеры с ионной проводимостью или твердые полимерные электролиты и полимеры с электронной проводимостью, которые и являются предметом настоящей статьи. В свою очередь, полимеры с электронной проводимостью разделяют на так называемые органические металлы (полимеры с проводимостью, близкой по механизму к электропроводности металлов; этот тип полимерных соединений в англоязычной литературе имеет широко распространенное название «conducting polymers» - «проводящие полимеры», которое мы и будем использовать) и редокс-полимеры, то есть соединения, в которых перенос электрона осуществляется главным образом за счет протекания окислительно-восстановительных реакций между соседними фрагментами полимерной цепи.

Проводящие полимеры

Первым проводящим полимером, с которого началось развитие исследований в данном направлении, был полиацетилен [(CH) n ] (рис. 1). В виде твердых серебристых пленок в 1974 году его впервые синтезировал из ацетилена Хидеки Ширакава в Токийском технологическом институте. В 1977 году он же одновременно с учеными из США установил, что частичное окисление полиацетилена молекулярным иодом или другими реагентами увеличивает его проводимость в 10 9 раз:

(CH) n + 0,5I 2 – (CH) + n (I 3) - 0,33

В частично окисленной форме полимер можно рассматривать как соль, состоящую из положительно заряженных ионов полимера и равномерно распределенных по его структуре противоионов, поддерживающих общую электронейтральность системы.

Многие проводящие полимеры могут быть получены из мономеров методом электрохимического окисления на поверхности инертного электрода. К их числу относится, например, полипиррол (см. рис. 1), полученный впервые в 1980 году методом электрохимического окисления пиррола в ацетонитрильном растворе, содержащем для придания ему электропроводности перхлорат тетрабутиламмония, исследователем из компании IBM Артом Диасом:

Рис. 1. Примеры проводящих полимеров и сравнение их проводимости с проводимостью некоторых веществ

Полимеры, полученные электрохимическим методом на поверхности электрода, могут быть переведены из проводящего (окисленного) в непроводящее (восстановленное) состояние путем изменения потенциала электрода. Переход полимера из окисленного в нейтральное восстановленное состояние сопровождается выходом зарядкомпенсирующих противоионов из полимера в раствор электролита, в котором проводится процесс, и наоборот (рис. 2).

Рис. 2. Окисление и восстановление пленки проводящего полимера: а - восстановленное нейтральное состояние полимера - изолятор; б - частично окисленное состояние полимера - проводник

Перенос заряда в проводящих полимерах

Определим Pn как периодически повторяющийся фрагмент цепи полимера, способный к обмену полным зарядом с редокс-партнером (или электродом электрохимической системы) и вследствие этого переходящий из одного редокс-состояния в другое (то есть окисляющийся или восстанавливающийся). Необходимо отметить, что структурная, периодически повторяющаяся единица цепи полимера P и рассматриваемый фрагмент Pn не всегда идентичны. Последний может содержать n структурных фрагментов P, причем n может быть и нецелым числом.

В результате редокс-реакции с участием Pn образуется катион (анион) радикал, а затем, возможно, и ди-катион (дианион):

Так же как и в химии окислительно-восстановительных реакций мономерных молекул, катион-радикальный фрагмент полимера может вступать в реакцию диспропорционирования:

Реакция диспропорционирования зависит от температуры и других параметров, в том числе от природы и характера взаимодействия с противоионами. Таким образом, в одном и том же полимере за счет реакций диспропорционирования могут встречаться различные редокс-состояния фрагментов.

Ион-радикалы и диионы, образующиеся в соединениях с разветвленной системой л-связей, способны к образованию комплексов с переносом заряда с исходными незаряженными соединениями (если этому не препятствуют пространственные факторы). Образование подобного комплекса из двух фрагментов демонстрирует следующее уравнение:

Важно понимать, что электронные свойства полимерного материала определяются как взаимодействием отдельных молекул одной цепи, так и переносзарядными взаимодействиями между фрагментами различных цепей.

Когда электрон удаляется из валентной зоны полимера с системой сопряженных связей, возникающая при этом вакансия («дырка» или катион-радикал) не претерпевает полной делокализации, как это можно было бы ожидать, основываясь на классической зонной теории. Происходит только частичная делокализа-ция, распространяющаяся на фрагмент Pn и вызывающая структурную деформацию этого участка полимера. Уровень энергии, соответствующий возникшему катион-радикалу, по сути дела представляет собой уровень дестабилизированной связывающей орбитали, следовательно, он выше энергии верхней границы валентной зоны и попадает в запрещенную зону (рис. 3). Это увеличение энергии напоминает увеличение энергии заполненной связывающей молекулярной орбитали после удаления с нее электрона.

Катион-радикал, частично делокализованный по фрагменту полимера, называется поляроном. Он стабилизируется, поляризуя окружающую среду, оправдывая свое название.

Рис. 3. Схема возникновения уровней энергии поляронов и энергетических зон биполяронов

Если следующий электрон удаляется из уже окисленного полимера, содержащего полярон, события могут развиваться двояко:

1) электрон удаляется из другого участка полимерной цепи и возникает новый, независимый от первого полярон;
2) электрон удаляется из того участка полимерной цепи, где уже присутствует полярон (речь идет о неспа-ренном электроне, образовавшемся в процессе возникновения первого полярона), при этом образуется дикатион, называемый биполяроном. Первоначально при окислении полимера в основном происходит образование поляронов. При увеличении окисленности полимера возможно и образование биполяронов.

Возникновение биполярона также вызывает структурную деформацию окружающей среды. Два положительных заряда биполярона не являются независимыми, они функционируют как пара. Как поляроны, так и биполяроны мобильны и под действием электрического поля способны двигаться вдоль полимерной цепи путем реорганизации двойных и одиночных связей в сопряженной системе:

При образовании большого количества биполяронов их энергетические уровни начинают перекрываться, образуя узкие биполяронные зоны в границах запрещенной зоны (см. рис. 3). В случае полипиррола при низких уровнях окисления полимера происходит образование парамагнитных поляронов. При увеличении уровня окисления поля-роны преобразуются в биполяроны, каждый из которых локализуется на протяжении примерно четырех пиррольных колец. Заряженный фрагмент из четырех пиррольных колец может двигаться вдоль полимерной цепи за счет реорганизации системы двойных и одиночных связей. Ниже показаны полярон и биполярон в молекуле полипиррола:

Поляронная теория проводимости ныне признана основной моделью переноса заряда в полимерах. Необходимо, однако, отметить, что она была развита для полимеров с недостижимой в реальных условиях идеальной структурой.

Редокс-Полимеры

Большинство из известных к настоящему времени редокс-полимеров - это металлокомплексные соединения, получение которых, как правило, осуществляют путем электрохимической полимеризации исходных мономерных комплексных соединений, имеющих как октаэдрическую, так и плоско квадратную конфигурацию. В качестве примера редокс-полимеров, получаемых из октаэдрических исходных комплексных соединений, можно привести полипиридиновые комплексы состава poly-, где Me = Co, Fe, Ru, Os; L = v-bpy (4-винил-4"-метил-2,2"-бипиридин), фенан-тролин-5,6-дион, 4-метилфенантролин, 5-аминофе-нантролин, 5-хлорфенантролин (x+y=3). Указанные соединения получают путем электрохимического восстановления мономерных комплексов, при котором первоначально образуются радикальные промежуточные частицы, далее взаимодействующие между собой или с молекулами исходного комплекса. Это показано ниже на примере образования полимера из октаэдрического комплекса с 5-хлорфенантролиновыми лигандами:

Сшивка исходных молекул происходит по трем направлениям в соответствии с их геометрией, в результате чего полимер имеет трехмерную структуру. Примером редокс-полимеров, получаемых из плоскоквадратных металлокомплексов, могут служить соединения poly-, где Schiff - четырехдентатные (то есть образующие с металлическим центром четыре связи) основания Шиффа:

Указанные полимерные комплексы получают путем электрохимического окисления мономерных мо¬лекул. Образование связей между фрагментами можно в первом приближении рассматривать с точки зрения донорно-акцепторного взаимодействия между лигандом одной молекулы и металлическим центром другой; в результате происходит образование так называемых одномерных или стековых макромолекул. Внешне совокупность таких макромолекул представляет собой твердую прозрачную пленку на поверхности электрода, имеющую различный цвет в зависимости от природы металла и наличия заместителей в структуре лиганда.

Перенос заряда в редокс-полимерах

Редокс-центрами (атомами, участвующими в окислительно-восстановительных реакциях в полимере) являются ионы металла, которые могут находиться в различном зарядовом состоянии. Так, комплексы металлов, имеющих только одно возможное зарядовое состояние (цинк, кадмий), не образуют редокс-полимеров. Необходимым условием проводимости редокс-полимеров является наличие в лигандном окружении комплексов разветвленной системы сопряженных л-связей, служащих проводящими мостами между редокс-центрами. Когда редокс-полимер полностью окислен или полностью восстановлен, то есть все его редокс-центры находятся в одном зарядовом состоянии, перенос заряда по цепи полимера невозможен и проводимость близка к нулю. Когда редокс-центры имеют разное зарядовое состояние, между ними возможен обмен электроном подобно тому, как это происходит в растворах при протекании окислительно-восстановительных реакций. Отсюда проводимость редокс-полимеров пропорциональна константе скорости самообмена электроном между редокс-центрами (kco) и концентрациям окисленных и восстановленных центров ( и ) в полимере:

Проводимость ~ kco

Проводимость максимальна при одинаковых концентрациях окисленных и восстановленных редокс-центров, что соответствует условиям, когда редокс-система имеет стандартный окислительно-восстановительный потенциал E0(/). Существование редокс-центров в различных зарядовых состояниях послужило основанием для использования по отношению к редокс-полимерам на основе координационных соединений названия «смешанно-валентные» или «частично-окисленные» комплексы. Переход молекул редокс-полимера из окисленного в восстановленное состояние сопровождается, подобно тому как это описано выше для проводящих полимеров (см. рис. 2), выходом зарядкомпенсирующих противоионов из полимера в раствор электролита, в котором проводится процесс, и наоборот.

В целом проводимость редокс-полимеров существенно меньше проводимости органических металлов и достигает величин порядка 10 -2 - 10 -3 С/см. Это связано со многими причинами, одной из которых является ограниченность скоростей редокс-реакций. Однако наряду с этим недостатком редокс-полимеры имеют и серьезные преимущества:

1) металлокомплексы в целом по сравнению с органическими соединениями предоставляют значительно более широкие возможности для управления свойствами полимеров за счет варьирования природы (электронной структуры) металлического центра. В качестве одного из многочисленных примеров, подтверждающих данное положение, можно привести существенное расширение числа оптических электронных переходов в металлокомплексах по сравнению с органическими соединениями за счет появления переходов лиганд - металл и интервалентных переходов. Это открывает новые возможности управления оптическими свойствами полимеров с помощью электрического управляющего сигнала;

2) некоторые из металлокомплексов, например , являются аналогами важнейших природных ферментов-биокатализаторов, в частности окси-геназы и пероксидазы. Это позволяет прогнозировать создание на их основе новых полимерных электрокаталитических систем, отличающихся высокой эффективностью и селективностью работы, характерной для биокатализаторов.

Некоторые направления использования проводящих полимерных соединений

Химические источники тока

Аккумуляторные батареи (рис. 4, а) были одним из первых коммерческих продуктов, основанных на применении проводящих полимерных соединений. В качестве материала положительного электрода в них используют полипиррол, политиофен или полианилин. Материалом для изготовления отрицательных электродов обычно служат литий или его сплавы (например, с алюминием).

В процессе разряда аккумулятора электроны двигаются от отрицательного электрода к положительному по внешней цепи. При этом литий окисляется, переходя в электролит в виде положительно заряженных ионов, полимерное соединение восстанавливается, что сопровождается переходом зарядкомпенсирующих анионов из полимера в электролит. При заряде аккумулятора от внешнего источника тока на электродах протекают обратные процессы.

Электролитом может быть как солевой раствор на основе пропиленкарбоната, часто использующегося как растворитель в источниках тока, так и полимерная мембрана, насыщенная соответствующей солью лития (твердый полимерный электролит). В последнем случае аккумулятор вовсе не содержит жидкой фазы, что делает его наиболее безопасным и удобным.

Рис. 4. Применение проводящих полимерных соединений: а - в химических источниках тока; б - в электрокаталитических системах

Электрокаталитические системы

Основным направлением использования проводящих полимеров и редокс-полимеров в каталитических системах является разработка химически модифицированных электродов (ХМЭ). ХМЭ представляет собой электрод из химически инертного материала с нанесенным на его поверхность слоем проводящего соединения, являющегося каталитически активным по отношению к протекающей в системе электрохимической реакции (см. рис. 4, б). Метод химической модификации электродов позволяет расширить круг традиционно применяемых электродных материалов (весьма, кстати, небольшой), увеличить избирательность их действия, реализовать возможность создания материалов с заранее заданными свойствами. В настоящее время ХМЭ на основе проводящих полимерных соединений используют для каталитического окисления метанола и предельных углеводородов в мягких условиях, восстановления галогенопроизводных предельных углеводородов, восстановления диоксида углерода, катализа редокс-реакций с участием биомолекул (энзимов и коэнзимов).

Управляемые оптические устройства

Одной из замечательных особенностей пленок проводящих полимерных соединений является их способность изменять свои оптические характеристики, в частности цвет, при изменении уровня окисления. Если уровень окисленности полимера регулируется потенциалом электрода, на который этот полимер нанесен, оптическими характеристиками полимера можно управлять с помощью электрического сигнала - проявляется так называемый электрохромный эффект. В частности, редокс-полимеры на основе комплексов при переходе из окисленного в восстановленное состояние изменяют свой цвет с темно-зеленого, оранжевого, красно-коричневого, синего (в зависимости от природы металлического центра и лигандного окружения) на желтый различных оттенков. Нанося электрохромные полимерные материалы методом электрополимеризации на оптически прозрачные электроды (кварцевые пластины с напыленным слоем прозрачных электропроводных оксидов олова и индия), можно получать электрохромные системы для использования в цветных дисплеях, затворных и фильтрующих оптических устройствах.

Хемотронные и сенсорные устройства

На рис. 5, а представлена схема микроэлектрохимического транзистора, основанного на применении электрохимически активного полимерного материала (проводящего полимера или редокс-полимера). Устройство состоит из двух металлических (золото или платина) микроэлектродов, находящихся на расстоянии порядка 1 мкм в слое полимера. Важнейшей характеристикой полимерного материала является то, что его проводимость зависит от степени его окисленности, которая контролируется потенциалом управляющего электрода Uу. Принцип действия микроэлектрохимического транзистора полностью аналогичен принципу действия обычных транзисторов. При изменении управляющего напряжения Uу электрохимически активный полимер окисляется или восстанавливается. При этом изменяется его проводимость, а следовательно, изменяется и величина тока, протекающего между электродами Iэ при постоянной величине напряжения Uэ.

На рис 5, б приведена вольт-амперная характеристика (зависимость между током Iэ и управляющим напряжением Uу) для микроэлектрохимического транзистора с редокс-полимером. Ток Iэ протекает только в узком диапазоне управляющих напряжений, обычно в пределах 100 мВ от стандартного потенциала E° редокс-пары, присутствующей в полимере. Максимальное значение тока достигается именно при Uу = E°, так как именно это состояние системы соответствует равным концентрациям окисленных и восстановленных центров полимера, то есть его максимальной проводимости.

Рис. 5. Схема микроэлектрохимического транзистора с применением редокс-полимера (а) и вольт-амперная характеристика транзистора (б)

Редокс-полимерные соединения как материалы для микроэлектрохимических устройств имеют по сравнению с проводящими полимерами два преимущества: узкая область напряжений, при которых происходит включение транзистора, и чувствительность к составу среды, в которой протекают редокс-реакции полимера. Первое преимущество определяет возможность функционирования транзистора в заданном узком диапазоне управляющих напряжений. Разнообразие имеющихся редокс-систем с разными значениями стандартных потенциалов дает возможность выбора необходимого диапазона. Зависимость свойств редокс-полимера от состава и концентрации компонентов электролита (кислорода, pH) открывает возможности создания на базе рассматриваемых устройств электрохимических сенсорных элементов. Поскольку при переходе к нанотехнологическим методам производства хемотронных устройств расстояния между электродами могут быть уменьшены до величин порядка нанометров, малосущественным, очевидно, станет и отставание редокс-полимеров от органических металлов по проводимости.

Синтез и изучение новых проводящих полимерных со¬единений - сравнительно молодое и прогрессирующее направление исследований, находящееся на стыке различных областей химии (координационная химия, электрохимия, органическая химия, катализ, химия твердого тела) и физики (теория проводимости, физика твердого тела, оптика). Современное состояние данного научного направления можно охарактеризовать как период интенсивного накопления информации о новых полимерных материалах, их свойствах и способах применения, период создания модельных устройств. Дальнейшее развитие химии проводящих полимерных соединений приведет к появлению на их основе принципиально новых промышленных каталитических, электронных и оптоэлектронных систем.

А. М. Тимонов, С. В. Васильева
Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург

Соросовский образователный журнал. 2000. Т. 6, № 3


Если и будет преувеличением сказать, что органические и печатные схемы совершают революцию в микроэлектронике, то совсем небольшим. Никогда еще такими быстрыми темпами не сокращался временной промежуток между фундаментальными исследованиями и их практическим применением. Поэтому эта тема была одной из основных на международной специализированной выставке пластмасс и каучука «К-2013» (16–23 октября 2013 г., Дюссельдорф), на которой специальный инновационный раздел выставки – Printed Electronics – представил посетителям широкие возможности для ознакомления с печатными технологиями, функциональными поверхностями, RFID-решениями, гибкими дисплеями, а также с OLED-разработками.

Последние десять лет мир переживает бум развития органической и печатной электроники; cотни компаний и научно-исследовательских институтов участвуют в гонке за новый рынок, который растет в геометрической прогрессии (см. рисунок) и, по прогнозам, через десять лет на порядок увеличится.

Считается, что история этого научного направления началась в 1977 г., когда химики Алан Хигер, Алан Мак-Диармид и Хидэки Сиракава опубликовали результаты своих исследований, где показали, что модифицированный галогенами полиацетилен может проводить электрический ток почти как металл. Это открытие и другие фундаментальные исследования в области органических полимеров способствовали развитию органической электроники, которая сочетает в себе разработки в физике твердого тела и молекулярной физике, органической и неорганической химии, полимерном материаловедении, электронике и печатном деле. В 2000 г. основатели этого прорывного направления получили Нобелевскую премию по химии «За открытие проводимости в полимерах».

Новые функции

В названии микроэлектроники нового поколения – так называемой органической и печатной электроники – термин «органический» используется по той простой причине, что крошечные схемные платы с мириадами транзисторов, датчиков, светодиодов и соединительных цепей построены уже не на основе кремния и арсенида галлия, а на базе производных углерода. Термин «печатный» означает, что они могут наноситься на легкие, гибкие и в том числе прозрачные подложки, сматываемые непосредственно с рулонов с применением широко распространенных способов печати (трафаретной, струйной или флексопечати) в форме плоских рисунков печатных плат и структурных единиц, имеющих в настоящее время толщину порядка нескольких десятков микрометров.

Еще одним активно продвигаемым вариантом их изготовления, например в производстве органических фото элементов, является последовательное газообразное напыление функциональных слоев в вакууме.
Примерами практического применения новых материалов и технологий уже стали «умная» упаковка, освещение с помощью органических светодиодов OLED (Organic Light Emmiting Diode), дешевые электронные метки радиочастотной идентификации RFID (Radio Frequency Identification), скручиваемые в рулон дисплеи, гибкие солнечные батареи, одноразовые приборы для диагностики, гибкие сенсорные экраны, печатные батареи, транзисторы и устройства памяти.

Интегрирование в изделия

С применением технологий печати и напыления получают разнообразные электронные или фотонные функциональные поверхности в форме пленок и покрытий, которые могут наноситься на всевозможные текстильные и прочие изделия с любыми радиусами кривизны. При этом они выполняют роль емкостных датчиков или световых полей достаточно большой площади в виде органических светодиодов, комплексных датчиков для измерения важных параметров окружающей среды или медицинских показателей, таких как температура и влажность.

Кроме того, они могут использоваться в качестве легких и гибких органических элементов солнечных батарей или плоских печатных аккумуляторов (фото 1) для обеспечения энергией миниатюрных приборов. Таким образом, спектр электроники и цифровой техники в перспективе уже не будет ограничиваться персональными компьютерами, планшетами, мобильными телефонами, игровыми приставками и тому подобными устройствами в специфическом исполнении. Новые системы могут быть без образования соединительных швов интегрированы в любые подходящие для этой цели изделия. Это открывает новые, ранее неизвестные и даже весьма экзотические возможности их встраивания в «умные» объекты и способствует расширению их взаимодействия с самоуправляемыми и автономными цифровыми системами в «интернете вещей».

Поле интенсивных исследований Разработкой пригодных для практического применения материалов и изделий, а также технологий их изготовления во всем мире активно занимаются исследовательские подразделения различных компаний химической, фармацевтической, автомобилестроительной, упаковочной отраслей промышленности, а также производители медицинского оборудования, электроники и потребительских товаров. Органическая и печатная электроника все еще остается полем очень интенсивных исследований с долгосрочными перспективами для дальнейшего развития. В настоящее время она идет по типичному для новых технологий пути от медийной шумихи до внедрения в массовое промышленное производство.

В последнем, пятом издании «дорожной карты» Ассоциации органической и печатной электроники (OE-A: Organic and Printed Electronics Association), которая является одной из рабочих групп в рамках Объединения немецких машиностроительных предприятий VDMA (Verein Deutscher Maschinen- und Anlagenbaubetriebe), посвященного возможностям практического применения и технологиям производства органической электроники, анализируются состояние и тенденции развития этой сферы деятельности на последующие 10 лет. Насчитывающая более 220 сотрудников ассоциация OE-A объединяет деятельность более 180 производящих компаний и научноисследовательских институтов из 29 стран Европы, Северной Америки, Азии и Австралии и координирует выполнение исследовательских и прикладных проектов, а также решение вопросов стандартизации в рамках Международной комиссии по электротехнике IEC (International Electrotechnical Commission) TC119 и других организаций.

Создаваемая на основе полимерных материалов новая микроэлектроника пока еще далеко не в полной мере заняла достойное ее положение во всех секторах рынка. Тем не менее первые изделия находят практическое применение уже сейчас, о чем зачастую даже не догадываются конечные потребители, пользующиеся этими изделиями.

Новые достижения в этой области являются базовой платформой для перспективного промышленного производства, объединяющего в себе принципы печатной техники, электроники и технологии полимерных материалов.

Экраны на органических светодиодах – первая область массового применения

Первой и очень успешной областью массового применения органической электроники стало производство небольших органических светодиодных экранов для мобильных телефонов и смартфонов. По данным аналитиков, в прошлом году оборот в этом секторе органической электроники составил 9 млрд долл. США, а к 2025 г. мировой ежегодный объем этого сектора рынка должен достичь отметки 200 млрд долл. США. Это примерно соответствует величине оборота на современном рынке традиционных кремниевых чипов. Уже рекламируются и даже существуют более крупные, характеризующиеся высокой интенсивностью красок и контрастностью органические светодиодные экраны для телевизоров с диагональю 55 дюймов (например, компаний Samsung и LG).

Следует, однако, отметить, что при их нынешней стоимости (около 10 тыс. долл. США) подобные экраны могут представлять интерес лишь для ярых любителей технических новинок.

Электронные устройства для чтения книг компаний Amazon или Sony, которые обеспечивают привлекательность электронных книг на «электронной бумаге» благодаря используемому в электрофоретическом дисплее бистабильному принципу индикации, выгодному с энергетической точки зрения, становятся повсеместно популярными. Они в основном предназначены для вывода статичной информации, например книжных страниц, на основе оригинальной технологии от компании E-Ink. Однако их дальнейшее коммерческое распространение в значительной степени сдерживается дисплеями Retina, используемыми в планшетах компании Apple и обладающими высоким разрешением и способностью воспроизводить видео. Если следовать инновационной логике эволюции, то дисплеи Retina наряду с менее яркими LCD-дисплеями уже давно должны были бы заменить технологию E-Ink.

Гибкие экраны

Следующий этап развития, который мог бы существенно продвинуть вперед электронные дисплеи, заключается в создании гибких (вплоть до сворачивания в трубку) электронных считывающих устройств и планшетов (фото 2), изготавливаемых без применения тяжелого и хрупкого стеклянного покрытия. В этом секторе лидирует британская компания Plastic Logic с полностью автоматизированной производственной базой в г. Дрездене, которая уже освоила искусство изготовления системных плат на органических тонкопленочных транзисторах, а следовательно, и активных матриц, необходимых для индивидуального управления яркостью отдельных пикселей экрана. Последним достижением в этой области является тонкий, легко гнущийся электронный дисплей с диагональю 10,7 дюйма, который при разрешении 150 точек на дюйм содержит TFT-матрицу размером 1280×960 пикселей, т. е. в общей сложности 1,2 млн пикселей.

В секторе органических сенсоров компания Plastic Logic совместно с французской компанией Isorg, дочерним подразделением крупного исследовательского комплекса CEA-LITEN в г. Гренобле (Франция), также опережает своих конкурентов. Эти компании недавно представили измерительный формирователь видеосигналов с размерами 4×4 см и 8930 пикселями на тонкой полимерной основе.

Капсулирование для предотвращения воздействия водяного пара

Развитие органической фотогальваники и индикаторной техники в известной степени сдерживается необходимостью ее герметич- ного капсулирования в целях защиты от воздействия содержащегося в атмосфере водяного пара, которая приводит к коррозии электродных слоев и сокращению срока службы приборов. До сих пор это удавалось осуществлять только с применением жестких защитных минеральных стекол. В качестве технического решения, приемлемого для конфигурируемых произвольным образом элементов солнечных батарей и гибких экранов, могут служить наносимые путем ламинирования барьерные пленки. Наиболее пригодными для этой цели представляются прозрачные слои из аморфного диоксида кремния (глинозема). Их разработкой и исследованием совместно занимаются различные организации, такие как Объединение фраунхофских институтов полимерных поверхностей (Polo) и Японский национальный институт современных наук (AIST).

Драйверы практического применения

Наиболее яркие и убедительные применения результатов упомянутых работ, согласно данным «дорожной карты» ассоциации OE-A, имеются в четырех крупных областях – автомобильной и фармацевтической промышленности, производстве потребительской электроники и «умной» упаковки для продуктов питания, медикамен Применение «умных» упаковок с изготовленными печатным способом и активируемыми с помощью радиосигналов этикетками (так называемыми электронными метками) могут способствовать существенному повышению эффективности процессов обращения с товарами и решению логистических задач.

Кроме того, они могут с помощью нанесенных методом печати и динамически актуализируемых полей показывать потребителям даты конечного использования продуктов, сигнализировать о наличии перерывов в охлаждении чувствительных продуктов или гарантировать подлинность высококачественных изделий при условии обеспечения связи с данными о прослеживаемой цепочке поставок. В этой области ведущее место занимает немецкая компания PolyIC, специализирующаяся на разработке электронных меток, печатных антенн для них, а также электропроводящих прозрачных органических пленок фото 4).

В «дорожной карте» ассоциации OE-A имеется также информация и еще об одной актуальной разработке: в автомобилях премиум-класса уже сейчас применяются печатные антенны и печатные датчики загруженности сидений, вмонтированные в их обивку и предназначенные для приведения в действие (в случае необходимости) пневматических подушек безопасности. Эти датчики регистрируют массу, различая тем самым взрослых и детей. К этому же оснащению относятся органические светодиодные экраны для видеокамер заднего хода, заменяющие традиционные зеркала, системы освещения блоков приборов на приборной панели и с трудом различимые противообледенительные устройства для стекол.

Ждут своей очереди органические дисплеи и отвечающие на прикосновение датчики для замены механических индикаторов и переключателей в автомобилях. Продумываются (в частности, компанией Audi) первые варианты фар заднего хода с использованием органических светодиодов, которые могут стать энергосберегающей и более экономичной альтернативой современным светодиодным фонарям. В стадии обсуждения находятся также органические светодиодные световые поля, которые могли бы служить для создания регулируемых и настраивающихся по цвету потолков крыш или для выделения дверных порогов.

Освещение с помощью органических светодиодов

В «дорожной карте» OE-A анализируются четыре основных направления применения продукции органической и печатной электроники – освещение с помощью органических светодиодов, органическая фотогальваника, электрофоретическая сфера (электронная бумага) и дисплеи на основе органических светодиодов, а также электронные конструкционные элементы как дополнение к традиционной микроэлектронике на кремниевой основе.

Из них наиболее оживленно в настоящее время в качестве наиболее претенциозного вида продукции обсуждаются источники света на базе органических светодиодов, так как с точки зрения энергосбережения они представляют собой серьезную альтернативу проверенным практикой светодиодам и галогенным лампам.

Более того, согласно «дорожной карте» OE-A OLED-дисплеи и освещение представляют собой прорывное направление в этой области. В отличие от традиционных светодиодов и точечных галогенных излучателей органические светодиоды позволяют создавать источники света достаточно большой площади с динамично регулируемым цветом излучения. Органические светодиоды могут весьма привлекательно с архитектурной точки зрения закрепляться на разных поверхностях, включая хорошо знакомые объекты домового хозяйства. В результате эти объекты становятся активными источниками освещения.

Осветительные устройства на основе органических светодиодов уже сейчас применяются в оформительских студиях и высококачественных видах продукции компаний Osram и Philips.

Органическая фотогальваника и аккумуляторы

Органическая фотогальваника развивается параллельно с гибридными системами из диоксида титана и устройствами, содержащими красящие вещества, а также с чисто органическими устройствами на основе полимеров. Они в настоящее время распространяются в коммерческих масштабах.

В связи с относительно низким КПД эти устройства не предназначаются для использования в качестве источников энерго снабжения в общественных сетях; они применяются только для локального обеспечения энергией потребителей (energy harvesting) и для зарядки аккумуляторов мобильных цифровых и потребительских приборов, а также измерительных станций.

В долгосрочной перспективе, начиная с 2021 г., «дорожная карта» ассоциации OE-A предусматривает использование органической фотогальваники в наружном освещении транспортных средств и зданий (BIPV: Building Integrated Photovoltaics).

Системные компоненты органической электроники, которые благодаря своим уникальным свойствам могут быть интегрированы в традиционные электронные схемы, применяются в печатных носителях информации, таких как сегнетоэлектрические и неэнергозависимые пленочные носители, предлагаемые ведущим финским производителем, компанией Thinfilm. Продвигаемые этой компанией разработки одновременно являются примером системной интеграции органических компонентов различных производителей в более крупные функциональные узлы, базирующиеся на общих печатных основаниях. В частности, путем комбинирования накопителей компании Thinfilm с печатными логическими схемами на транзисторах калифорнийской исследовательской компании PARC создается программно адресуемый модуль памяти (фото 5).

Путем дальнейшего развития этой разработки в сочетании с печатными термисторами, панелью индикации исследовательского института Forschungsinstitut Acreo Swedish и печатными аккумулято- рами могут создаваться компактные измерительные системы.

Печатные, очень плоские и гибкие аккумуляторы также оказываются в фокусе развития при решении вопросов системной интеграции органической электроники. В настоящее время в секторе одноразового применения доминирующее положение занимают угольно-цинковые аккумуляторы, а подзаряжаемые аккумуляторы на литиевой основе пока еще находятся в стадии разработки.

В качестве альтернативных источников для кратковременного питания приборов рассматриваются также энергоемкие суперконденсаторы. Их разрядка осуществляется аналогично аккумуляторам.

Подобные источники электрического тока могут быть интегрированы вместе с индикаторными и световыми полями, реагирующими на касание сенсорами и элементами солнечных батарей в упаковки, текстильные изделия и другие изделия потребительского назначения, повышая тем самым уровень их ценности и функциональности.

Подготовил: к. т. н. В. Н. Мымрин с использованием
пресс-материалов выставочной компании Messe Duesseldorf

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2014 год

Тема: Полимеры и их применение в XXI веке

1. Полимеры

1. Определение полимер поликонденсация молекулярный

v По своему определению, полимер -- это высокомолекулярное соединение, содержащее в своём составе достаточное количество мономеров или «мономерных звеньев.

v Иными словами, полимеры это линейные цепи, состоящие из большего (N>1) числа одинаковых звеньев. К примеру, для синтетических полимеров N~ 102-104.

v Как правило, полимеры -- вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

2. Первое получение полимера:

v В 1867 году российский химик Александр Бутлеров получил первый полимер - неизвестный ранее полиизобутилен.

v А в 1910 году Сергей Лебедев, тоже российский химик, синтезировал первый образец искусственного каучука {(CH3)2C=CH2}n

3. Реакции получения полимеров - поликонденсация и полимеризация:

v В основном, все полимеры получают двумя методами - реакциями поликонденсации и полимеризации.

v В реакцию полимеризации вступают молекулы, содержащие кратную (чаще - двойную) связь. Такие реакции протекают по механизму присоединения, всё начинается с разрыва двойных связей (реакция №1- получение полиэтилена):

v Этим видом реакции получают многие полимеры, в том числе капрон.

Размещено на http://www.allbest.ru/

2014 год

1. Классификация полимеров:

2. Структура полимеров:

3. Применение:

v Благодаря ценным свойствам, полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве, медицине. Автомобиле- и судостроении, авиастроении и в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы).

v На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, пленки и лакокрасочные покрытия.

2. Полимеры. Применение в XXI веке

v Наука уже давно не стоит на месте и за тот период времени от открытия полимера до наших дней, создано великое множество модификаций этого удивительного вещества. Одними из последних разработок являются следующие три полимера, каждый из которых обладает уникальными свойствами.

1. «Умный пластилин»

v Главным компонентов такого пластилина является полидиметилсилоксан - (C2H6OSi)n. Этот полимер сочетает в себе несколько необычных свойств. Так, в зависимости от разных условий среды, он ведёт себя по-разному: в состоянии покоя он растекается как жидкость, при резком механическом воздействии разрывается на куски как твердое тело.

v “Умный пластилин” был получен случайно, его изобретатель смешал силиконовое масло с борной кислотой в надежде получить новый вид резины, но клейкая масса оказалась не на что не похожей.

2. Гидрогель

v Гидрогели - представляют собой твердые гранулы, полимерное вещество способное за пару часов увеличится в объеме больше чем в десять раз. Все что для этого нужно это вода, разбухнув гранулы, станут мягкими как воск, когда вода испарится, они снова уменьшатся и затвердеют. Подобные вещества называются - супер-абсорбентами, они не только поглощают огромное количество воды, набухший полимер удерживает её внутри собственными молекулами.

v При поглощении растворителя полимером происходит растяжении клубков, т.е. в исходном состоянии сжатый полимерный клубок поглощает в себя растворитель, например воду и происходит её включение внутрь клубка.

v Этот принцип лежит и в основе эко-почвы, гидрогели, используемые в сельском хозяйстве. Обычно при поливе растений большая часть воды уходит в более глубокие слои почвы. Добавленный в почву гидрогель не позволяет утечь ей как сквозь пальцы, даже если растение пустит корни сквозь гранулу, вода из неё не выльется.

v Так как молекулу воды встроены внутрь полимерных цепей гидрогеля, то при физическом разрушении гидрогели не наблюдается вытекания воды, а система сохраняет такие же свойства, как и до разрушения.

v Самый яркий пример работы супер-абсорбента - детские одноразовые подгузники, даже тот, кто не сталкивался с ними, знает принцип работы. В многослойной конструкции содержится тот же полимер впитывающий жидкость как губка. Гидрогель, подобное вещество из подгузника способен выполнять и более серьезную работу, например в нефтедобывающей промышленности.

v В нефтедобыче давно существуют серьезные проблемы. При откачке на каждую тонну “черного золота” приходится три тонны воды. На очистку нефти от лишней жидкости тратятся огромные средства. Долгое время ученые искали способ отделить нефть от воды до того как она попадет в трубопровод, решение было найдено в лаборатории Московского государственного университета.

v Полимерная жидкость закачивается в нефтяную скважину и она ведет себя по-разному в зависимости от того проходит скважина через водный пласт или через нефтеносный пласт.

v Принцип действия достаточно прост. Попав в скважину, полимерная жидкость по разному реагирует на нефть и воду, с “черным золотом” она в реакцию не вступает, но когда на своем пути полимер встречает воду, он тут же впитывает её. Набухший гель закупоривает пласт воды и не выпускает её наружу. Расширение гидрогеля создает дополнительное давление на нефть что приводит к её выдавливанию наружу в чистом состоянии.

3. «Умное лекарство

v Некоторые полимеры обладают свойством реагировать на изменения внешней среды, так “умный пластилин” меняет цвет в зависимости от температуры. В холодной воде заметно темнеет, если перенести его в воду комнатной температуры возвращается к своему первоначальному цвету. При изменении температуры изменяется плотность клубка, т.е. чем ниже температура, тем клубок имеет меньший объем и таким образом при понижении температуры происходит выдавливание красителя, а при его увлечении краситель втягивается в клубок, что и приводит к изменению цвета.

v Полимер выдавливает краску как губка воду, а что если заменить краситель лекарством, сможет ли полимер контролировано выдавать нужную дозу препарата? Есть такое направленное транспортное лекарство в живом организме, эта проблема, которая решается и которую необходимо решать достаточно серьезно бьются.

v Большая часть лекарственных препаратов расходуется впустую. Таблетка не умеет находить больной орган, растворившись в желудке, она через кровь разойдется по всему организму, до нужного места доберется не более 10% препарата. В идеале, лекарство должно попадать сразу к больному органу и не вызывать побочных эффектов.

v “Умные полимеры” могут реагировать не только на температуру, они чувствительны к любому изменению среды, на которую они будут запрограммированы. Мы знаем, что ранение сопровождается подкислением, т.е. среда становится кислой, а вот этот гелий сделан, так что при подкислении он немного сжимается и вытесняет лекарство, которое ему было введено.

v На основе полимерного геля создали уникальное лекарство - ранозаживляющие гидрогели. Гидрогель состоит из восьми компонентов, которые смешиваются в дистиллированной воде в определенной последовательности. В промышленных масштабах каждый компонент добавляется с определенным интервалом времени, при реакции эти вещества создают стойкую полимерную структуру, в которую затем добавляется лекарство.

v Гель представляет собой транспортное средство, который в микрокапсулах содержит лекарственный препарат, еще его называют “умный гель” - потому что не зависимо от людей, которые его применяют, он сам ищет и находит места поражения и оказывает помощь. В составе гидрогеля не одно а сразу несколько лекарств, попав на рану полимер отдает их поочередно, в зависимости от того что требуется организму обезболить или начать процесс заживления, лекарство на рану поступают постепенно причем продолжительное время, а потом его можно просто смыть водой. До этой работы ничего подобного в России не было.

v По тому же принципу действует и оболочка капсулы (таблетки), она изготовлена из специального полимера, он отвечает не только за доставку медикаментов по назначению, но и за выделение определенной дозы лекарства в течение долгого времени.

Список литературы

1. ru.wikipedia.org

2. http://www.sigmapluss.ru/umniipolimer.php

3. http://www.kation-msk.ru/ru/press/article/15_8.html

4. http://xn--e1aogju.xn--p1ai/

5. http://www.km.ru/referats/7FA5CF33809646779974A80FDAD7A6CC

Размещено на Allbest.ru

...

Подобные документы

    Образование высокомолекулярного соединения из простых молекул-мономеров в ходе реакций полимеризации и поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Молекулярные цепи.

    реферат , добавлен 28.01.2009

    Изучение понятия и строения полимеров, их классификации по происхождению, форме молекул, по природе. Характеристика основных способов получения - поликонденсации и полимеризации. Пластмассы и волокна. Применение полимеров в медицине и строительстве.

    презентация , добавлен 12.10.2015

    Практическое проведение эмульсионной полимеризации и сополимеризации акриловых мономеров, скорость и кинетика реакции, влияющие факторы. Способ предварительного создания концентрированной эмульсии, образование микроэмульсии и анализ ее дисперсности.

    статья , добавлен 22.02.2010

    Классификация реакций поликонденсации, глубина ее протекания, уравнение Карозерса. Влияние различных факторов на молекулярную массу и выход полимера при поликонденсации. Методы осуществления реакции. Полимеры, получаемые реакцией поликонденсации.

    контрольная работа , добавлен 19.09.2013

    Полиэтилен - высокомолекулярное соединение, полимер этилена; белый твёрдый продукт, устойчивый к действию масел, ацетона, бензина и других растворителей. Сфера применения полиэтилена. Области применения полиэтиленовых труб и их основные преимущества.

    реферат , добавлен 27.10.2010

    Общее понятие о полимерах. Процесс получения высокомолекулярных соединений. Биосовместимые материалы и устройства. Органические, элементоорганические, неорганические полимеры. Природные органические полимеры. Применение биоклеев в неинвазивной терапии.

    реферат , добавлен 23.04.2013

    Что такое полимеры и особенности развития науки о полимерах. Описание различий в свойствах высоко- и низкомолекулярных соединений. История развития производства полимеров. Технологический процесс образования, получения и распространения полимеров.

    реферат , добавлен 12.06.2011

    Образование высокомолекулярного соединения из молекул-мономеров в ходе реакций полимеризации, поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Каталитическая полимеризация.

    реферат , добавлен 28.01.2009

    Полимеры как органические и неорганические, аморфные и кристаллические вещества. Особенности структуры их молекулы. История термина "полимерия" и его значения. Классификация полимерных соединений, примеры их видов. Применение в быту и промышленности.

    презентация , добавлен 10.11.2010

    Классификация, строение полимеров, их применение в различных отраслях промышленности и в быту. Реакция образования полимера из мономера - полимеризация. Формула получения полипропилена. Реакция поликонденсации. Получение крахмала или целлюлозы.

Введение

В 1965 году, на заре компьютерной эры, директор отдела исследовательской компании Fairchild Semiconductors Гордон Мур предсказал, что количество транзисторов на микросхеме будет ежегодно удваиваться. Прошло уже 35 лет, а "закон Мура" по-прежнему действует. Правда, со временем практика микроэлектронного производства внесла в него небольшую поправку: сегодня считается, что удвоение числа транзисторов происходит каждые 18 месяцев. Такое замедление роста вызвано усложнением архитектуры микросхем. И все же, для кремниевой технологии предсказание Мура не может выполняться вечно.

Но есть и другое, принципиальное ограничение на "закон Мура". Возрастание плотности размещения элементов на микросхеме достигается за счет уменьшения их размеров. Уже сегодня расстояние между элементами процессора может составлять 0,13х10 -6 метра (так называемая 0,13-микронная технология). Когда размеры транзисторов и расстояния между ними достигнут нескольких десятков нанометров, вступят в силу так называемые размерные эффекты - физические явления, полностью нарушающие работу традиционных кремниевых устройств. Кроме того, с уменьшением толщины диэлектрика в полевых транзисторах растет вероятность прохождения электронов через него, что также препятствует нормальной работе приборов.

Еще один путь повышения производительности - применение вместо кремния других полупроводников, например арсенида галлия (GaAs). За счет более высокой подвижности электронов в этом материале можно увеличить быстродействие устройств еще на порядок. Однако технологии на основе арсенида галлия намного сложнее кремниевых. Поэтому, хотя за последние два десятка лет в исследование GaAs вложены немалые средства, интегральные схемы на его основе используются в основном в военной области. Здесь их дороговизна компенсируется низким энергопотреблением, высоким быстродействием и радиационной устойчивостью. Однако и при разработке устройств на GaAs остаются в силе ограничения, обусловленные как фундаментальными физическими принципами, так и технологией изготовления.

Вот почему сегодня специалисты в разных областях науки и техники ищут альтернативные пути дальнейшего развития микроэлектроники. Один из путей решения проблемы предлагает молекулярная электроника.

МОЛЕКУЛЯРНАЯ ЭЛЕКТРОНИКА -ТЕХНОЛОГИЯ БУДУЩЕГО.

Возможность использования молекулярных материалов и отдельных молекул как активных элементов электроники уже давно привлекает внимание исследователей различных областей науки. Однако только в последнее время, когда стали практически ощутимы границы потенциальных возможностей полупроводниковой технологии, интерес к молекулярной идеологии построения базовых элементов электроники перешел в русло активных и целенаправленных исследований, которые стали сегодня одним из важнейших и многообещающих научно-технических направлений электроники.

Дальнейшие перспективы развития электроники связываются с созданием устройств, использующих квантовые явления, в которых счет уже идет на единицы электронов. В последнее время широко ведутся теоретические и экспериментальные исследования искусственно создаваемых низкоразмерных структур; квантовых слоев, проволок и точек. Ожидается, что специфические квантовые явления, наблюдающиеся в этих системах, могут лечь в основу создания принципиально нового типа электронных приборов.

Переход на квантовый уровень, несомненно, является новым, важным этапом в развитии электроники, т.к. позволяет перейти на работу практически с единичными электронами и создать элементы памяти, в которых один электрон может соответствовать одному биту информации. Однако создание искусственных квантовых структур представляет сложнейшую технологическую задачу. В последнее время стало очевидным, что реализация таких структур сопряжена с большими технологическими сложностями даже при создании единичных элементов, и непреодолимые трудности возникают при создании чипов с многомиллионными элементами. Выходом из создавшегося положения, по мнению многих исследователей, является переход к новой технологии -молекулярной электронике.

Принципиальная возможность использования отдельных молекул как активных элементов микроэлектроники была высказана Фейнманом еще в 1957 году. Позднее он показал, что квантомеханические законы не являются препятствием в создании электронных устройств атомарного размера, пока плотность записи информации не превышает 1 бит/атом. Однако, только с появлением работ Картера и Авирама стали говорить о молекулярной электронике, как о новой междисциплинарной области, включающей физику, химию, микроэлектронику и компьютерную науку, и ставившую своей целью перевод микроэлектроники на новую элементную базу -молекулярные электронные устройства.

Здесь определенно напрашивается аналогия с историей развития устройств точного времени, которые прошли путь от механических хронометров, использующих различного типа маятники, через кварцевые часы, основанные на твердотельных резонансах, и, наконец, сегодня наиболее точные часы используют внутримолекулярные эффекты в молекулах аммиака и т.д. Подобным образом развивается и электроника, прошедшая путь от механических электромагнитных реле и электровакуумных ламп к твердотельным транзисторам и микросхемам, а сегодня она подошла к порогу, за которым лежит область молекулярной технологии.

Не случайно, что основное внимание было сосредоточено на молекулярных системах. Во-первых, молекула представляет собой идеальную квантовую структуру, состоящую из отдельных атомов, движение электронов по которой задается квантово-химическими законами и является естественным пределом миниатюризации. Другой, не менее важной особенностью молекулярной технологии, является то, что создание подобных квантовых структур в значительной мере облегчено тем, что в основе их создания лежит принцип самосборки. Способность атомов и молекул при определенных условиях самопроизвольно соединяться в наперед заданные молекулярные образования является средством организации микроскопических квантовых структур; оперирование с молекулами предопределяет и путь их создания. Именно синтез молекулярной системы является первым актом самосборки соответствующих устройств. Этим достигается идентичность собранных ансамблей и, соответственно, идентичность размеров элементов и, тем самым, надежность и эффективность протекания квантовых процессов, функционирования молекулярных устройств.

С самого начала развития молекулярного подхода в микроэлектронике открытым оставался вопрос о физических принципах функционирования молекулярных электронных устройств. Поэтому основные усилия были сосредоточены на их поиске, при этом основное внимание уделялось одиночным молекулам или молекулярным ансамблям. Несмотря на большое количество работ в этом направлении, практическая реализация молекулярных устройств далека до завершения. Одной из причин этого является то, что особенно в начальный период становления молекулярной электроники сильный акцент был сделан на работе отдельных молекул, поиске и создании бистабильных молекул, имитирующих триггерные свойства. Конечно, этот подход весьма притягателен с точки зрения миниатюризации, но он оставляет мало шансов на то, что молекулярные электронные устройства могут быть созданы в ближайшее время.

Развитие нового подхода в микроэлектронике требует решения ряда проблем в трех основных направлениях: разработка физических принципов функционирования электронных устройств; синтез новых молекул, способных хранить, передавать и преобразовывать информацию; разработка методов организации молекул в супрамолекулярный ансамбль или молекулярное электронное устройство.

В настоящее время ведется интенсивный поиск концепций развития молекулярной электроники и физических принципов функционирования, и разрабатываются основы построения базовых элементов. Молекулярная электроника становится новой междисциплинарной областью науки, объединяющей физику твердого тела, молекулярную физику, органическую и неорганическую химии и ставящей своей целью перевод электронных устройств на новую элементную базу. Для решения поставленных задач и концентрации усилий исследователей, работающих в различных областях знаний, во всех индустриально развитых странах создаются Центры молекулярной электроники, объединенные лаборатории, проводятся международные конференции и семинары.

Сейчас, да видимо, и в ближайшее время, трудно говорить о создании молекулярных электронных устройств, работающих на основе функционирования одиночных молекул, но можно реально говорить об использовании молекулярных систем, в которых внутримолекулярные эффекты имеют макроскопическое проявление. Такие материалы можно назвать "интеллигентными материалами". Этап создания "интеллигентных материалов", т.е. этап функциональной молекулярной электроники, естественный и необходимый период в развитии электроники, является определенной стадией в переходе от полупроводниковой технологии к молекулярной. Но возможно, что этот период будет более продолжительным, чем сейчас нам кажется. Представляется более реалистичным, особенно на первых этапах развития молекулярной электроники, использовать макроскопические свойства молекулярных систем, которые обуславливались бы структурными реорганизациями, происходящими на уровне отдельных молекулярных ансамблей. Физический принцип функционирования подобных электронных устройств должен снять размерностные ограничения, по крайней мере, до размеров больших молекулярных образований. С точки зрения электроники и потенциальной возможности стыковки молекулярных устройств с их полупроводниковыми собратьями, было бы предпочтительно иметь дело с молекулярными системами, изменяющими свою электронную проводимость при внешних воздействиях, в первую очередь под воздействием электрического поля.

Идеи молекулярной электроники не сводятся к простой замене полупроводникового транзистора на молекулярный, хотя будет решаться и эта частная задача. Главной целью все же является создание сложных молекулярных систем, реализующих одновременно несколько различных эффектов, выполняющих сложную задачу. К задачам этого типа естественно в первую очередь отнести задачу создания универсального элемента памяти, как наиболее важной части любого информационно-вычислительного устройства. Представляется весьма очевидным, что потенциальные возможности молекулярной электроники будут раскрыты в большей мере при создании нейронных сетей, состоящих из нейронов и связывающих их электроактивных синапсов. Создание средствами молекулярной электроники искусственных нейронов, различного типа сенсоров, включенных в единую сеть, откроет путь к реализации всех потенциальных возможностей, заложенных в нейрокомпьютерной идеологии, позволит создать принципиально новый тип информационно-вычислительных систем и подойти вплотную к решению проблемы создания искусственного интеллекта.

Бактериородопсин: структура и функции.

Молекулярная электроника определяется как кодирование (запись), обработка и распознавание (считывание) информации на молекулярном и макромолекулярном уровне. Основное преимущество молекулярного приближения заключается в возможности молекулярного дизайна и производства приборов "снизу вверх", т.е. атом за атомом или фрагмент за фрагментом, - параметры приборов определяются органическим синтезом и методами генной инженерии. Двумя общепризнанными достоинствами молекулярной электроники являются значительное уменьшение размеров устройств и времени срабатывания (gate propagation delays) логических элементов.

Биоэлектроника, являющая разделом молекулярной электроники, исследует возможность применения биополимеров в качестве управляемых светом или электрическими импульсами модулей компьютерных и оптических систем. Основное требование к вероятным кандидатам среди большого семейства биополимеров состоит в том, что они должны обратимо изменять свою структуру в ответ на некое физическое воздействие и генерировать, по крайней мере, два дискретных состояния, отличающихся легко измеряемыми физическими характеристиками (например, спектральными параметрами).

Значительный интерес в связи с этим представляют белки, основная функция которых связана с трансформацией энергии света в химическую в различных фотосинтетических системах. Наиболее вероятным кандидатом среди них является светозависимый протонный насос - бактериородопсин (БР) из галофильного микроорганизма Halobacterium salinarum (ранее Halobacterium halobium ), открытыйв 1971году.

Бактериородопсин - ретиналь-содержащий генератор протонного транспорта представляет собой трансмембранный белок в 248 аминокислот с молекулярным весом 26 кДа, пронизывающий мембрану в виде семи a -спиралей; N- и C-концы полипептидной цепи находятся по разные стороны цитоплазматической мембраны: N-конец обращен наружу, а C-конец - внутрь клетки (рис.1, 2).

Рис.1. Модель БР в элементах вторичной структуры. Выделены аминокислоты,
участвующие в протонном транспорте: кружками остатки аспарагиновой кислоты,
квадратом остаток аргинина. С Lys-216 (К-216) образуется основание Шиффа (SB).
Стрелкой показано направление протонного транспорта.

Хромофор БР - протонированный альдимин ретиналя с a -аминогруппой остатка Lys-216 размещен в гидрофобной части молекулы. После поглощения кванта света в ходе фотоцикла происходит изомеризация ретиналя из all -E в 13Z-форму. Белковое микроокружение хромофора может рассматриваться как рецептор с субстратной специфичностью для all -E /13Z-ретиналя, который катализирует эту изомеризацию при комнатной температуре. Кроме того, часть аминокислот ответственна за подавление изомеризаций, отличных от all -E /13Z, например от all -E- к 7Z-, 9Z-, 11Z-ретиналю. Остальная часть полипептидной цепи обеспечивает канал протонного транспорта или экранирует фотохромную внутреннюю группу от влияний внешней среды.

Взаимная топография образованных полипептидной цепью БР элементов вторичной структуры после поглощения молекулой хромофора кванта света изменяется, в результате чего формируется канал трансмембранного переноса протонов из цитоплазмы во внешнюю среду. Однако молекулярный механизм светозависимого транспорта до сих пор неизвестен.

Рис.2. Схематическая модель трехмерной (пространственной) структуры БР Семь a -спиралей формируют хромофорную полость и трансмембранный канал переноса протона.

БР содержится в клеточной мембране H. salinarum - галофильной архебактерии, которая живет и размножается в соленых болотах и озерах, где концентрация NaCl может превышать 4 М, что в 6 раз выше, чем в морской воде (~ 0,6 М). Этот уникальный белок во многом подобен зрительному белку родопсину, хотя их физиологические функции различны. В то время как зрительный родопсин действует как первичный фоторецептор, который обеспечивает темное зрение большинства позвоночных животных, физиологическая роль БР заключается в том, чтобы давать возможность галобактериям действовать как факультативным анаэробам в случае, когда парциальное давление кислорода в окружающей среде мало. Белок функционирует как светозависимый протонный насос, который обеспечивает образование электрохимического градиента протонов на поверхности мембраны клетки, который, в свою очередь, служит для аккумулирования энергии. Первичная работа, производимая градиентом, заключается в синтезе АТФ через анаэробное (фотосинтетическое) фосфорицирование и, в этом случае, представляет собой классический пример хемиосмотической гипотезы Митчелла об окислительном фосфорицировании. Когда освещение отсутствует, а парциальное давление кислорода высоко, бактерии возвращаются к аэробному окислительному фосфорицированию.
Клетки H. salinarum содержат также два так называемых сенсорных родопсина (СР I и СР II), которые обеспечивают положительный и отрицательный фототаксис. Различные длины волн считываются СР I и СР II как детекторными молекулами, что вызывает каскад сигналов, управляющих жгутиковым двигателем бактерии. При помощи такого элементарного процесса светового восприятия микроорганизмы самостоятельно перемещаются в свет подходящего спектрального состава. Кроме того, в клетках имеется галородопсин (ГР), представляющий собой светозависимый насос ионов Cl – . Его основная функция - транспорт в клетку ионов хлора, которые постоянно теряются бактерией, перемещаясь в направлении изнутри наружу под действием электрического поля, создаваемого БР. Механизм действия ГР неясен. Предполагается, что Cl – связывается с положительно заряженным четвертичным азотом протонированного Шиффова основания, а изомеризация ретиналя из all -E в 13Z-форму вызывает перемещение этого азота с прикрепленным к нему ионом Cl – от входного к выходному Cl – – проводящему пути.

Рис.3. Участок пурпурной мембраны (вид сверху).

БР локализован в участках клеточных мембран H. salinarum в виде пурпурных мембран (ПМ), образующих двумерные кристаллы с гексагональной решеткой. Эти участки содержат сам белок, некоторые липиды, каротиноиды и воду (рис.3). Обычно они имеют овальную или круглую форму со средним диаметром около 0,5 мкм и содержат около 25 % липидов и 75 % белка. ПМ устойчивы к солнечному свету, воздействию кислорода, температуре более чем 80ºC (в воде) и до 140ºC (сухие), рН от 0 до 12, высокой ионной силе (3 М NaCl), действию большинства протеаз, чувствительны к смесям полярных органических растворителей с водой, но устойчивы к неполярным растворителям типа гексана. Большое практическое значение имеет существующая возможность встраивания ПМ в полимерные матрицы без потери фотохимических свойств.

Индуцированный светом протонный транспорт сопровождается рядом циклических спектральных изменений БР, совокупность которых называется фотоциклом (рис.4). Тридцать лет исследований привели к довольно детальному пониманию фотоцикла, однако подробности протонного транспорта все еще изучаются.

Фотохимический цикл БР состоит из отдельных интермедиатов, которые могут быть идентифицированы как максимумами поглощения, так и кинетикой образования и распада. На рис.4 показана упрощенная модель фотоцикла БР.

Рис.4. Фотоцикл БР.

Фотохимические и тепловые стадии показаны как толстые и тонкие стрелки соответственно. Вертикальные символы указывают на all -E-конформацию ретиналя (интермедиаты B и О ), наклонные символы - на 13Z-конформацию. В темноте БР превращается в 1:1 смесь D и B , эта смесь называется темноадаптированным БР. При освещении БР происходит световая адаптация, т.е. переход в основное состояние B . Оттуда начинается фотоцикл, который приводит к транспорту протона через мембрану. В течение перехода L к М , длящегося примерно 40 мксек, Шиффово основание депротонируется и Asp85 становится протонированным. Оттуда протон идет к внешней стороне внеклеточной части протонного канала. В течение перехода М к N альдимин репротонируется. В качестве донора протонов выступает остаток Asp96. Asp96 репротонируется через цитоплазматический протонный полуканал. В то время как все преобразования между интермедиатами обратимы, переход от M I к M II , как полагают, является основным необратимым шагом в фотоцикле. В течение этого перехода азот Шиффова основания становится недоступным для внеклеточной части протонного канала, а только для цитоплазматического полуканала, что связано с конформационными изменениями белковой молекулы.

Физико-химические свойства интермедиатов характеризуются длиной волны их максимумов поглощения и величиной специфического молярного коэффициента экстинкции. Протонирование SB и конфигурация ретинилиденового остатка воздействует на величины максимумов поглощения. В течение фотоцикла БР происходит несколько зависящих от температуры конформационных изменений в белке, таким образом, формирование большинства интермедиатов может быть подавлено охлаждением.

Кроме основного фотоцикла имеется два состояния, которые могут быть вызваны искусственно. В интермедиатах P и Q конформация ретиналя 9Z. Это достигается после фотохимического возбуждения all -E-ретиналя, когда в то же самое время Asp85 протонирован. Это может быть достигнуто в диком типе БР при низком значении pH или деионизацией (формирование так называемых голубых мембран), однако такие препараты нестабильны. Альтернативным подходом является замена Asp85 аминокислотой, имеющей другое значение pKa, которая остается незаряженной при интересующих значениях pH или полное удаление карбоксильной группы методами сайт-направленного мутагенеза. Стабильность таких мутантных голубых мембран выше.

Уникальные свойства бактериородопсина обеспечивают широкий диапазон технических приложений, в которых он может использоваться, однако коммерчески осуществимы на сегодняшний день только оптические, поскольку их интеграция в современные технические системы наиболее проста.

Оптические приложения основаны на применении пленок БР - полимерных матриц различного состава с включенными в них молекулами белка. Впервые в мире такие пленки на основе дикого типа БР были получены и исследованы в нашей стране в рамках проекта "Родопсин"; в 80-х годах была продемонстрирована эффективность и перспективность применения таких материалов, названных "Биохром", в качестве фотохромных материалов и среды для голографической записи.

Весьма интересной является возможность варьирования фотохимических свойств пленок БР:
а) заменой природного хромофора на модифицированный;
б) химическими (физико-химическими) воздействиями;
в) точечными заменами определенных аминокислотных остатков методами генетической инженерии.

Такие модифицированные материалы могут обладать ценными пецифическими свойствами, что предопределит их использование как элементной базы биокомпьютера.

Мыслящая молекула

В последние годы ученые многих стран вернулись к старой и простой идее "химического" компьютера, в котором вычисления производятся отдельными молекулами. За последний год исследователям сразу из нескольких лабораторий удалось получить в этой области блестящие результаты, обещающие радикально изменить ситуацию.

Большого успеха достигли учёные в работе с молекулами псевдоротоксана (они показаны на рис.1).

Им удалось насадить такую молекулу, имеющую форму кольца, на ось – линейную молекулу. Для того чтобы кольцо не соскакивало с оси, к ее концам присоединяются крупные молекулярные фрагменты, играющие роль "гаек" (в этом качестве использовались разнообразные донорные группы). При реакции с кислотой (Н+) или основанием (В) кольцо может скользить от одного конца оси к другому, "переключая" химическое состояние. Забавно, что в принципе на молекулярном уровне воссоздается механическое устройство, весьма похожее на соединение стержней и колесиков в первых, самых примитивных, вычислительных устройствах ХVII века (впрочем, при желании в этой молекулярной структуре можно углядеть и простейшие канцелярские счеты, с одной костяшкой на каждом прутике).

Эта изящная химическая молекула переключатель была изучена еще в начале 90-х годов, однако для практической реализации идеи требовалось еще придумать методы объединения и управления массивами этих минимикродиодиков. Создав моно слой одинаково ориентированных молекул такого типа на поверхности металла (эту очень сложную задачу удалось решить, используя новейшие нанотехнологические методы самосборки), ученые осадили на него тончайший слой золота и уже создали на этой основе примитивные прототипы логических вентилей.

Через несколько месяцев после этого объединенная группа Марка Рида и Джеймса Тура (из универси тетов Йеля и Райса) продемонстрировала общественности еще один класс молекул-переключателей. Результаты были настолько впечатляющими, что журнал "Scientific American" (июнь, 2000) даже вынес на обложку анонс "Рождение молекулярной электроники"(хочется добавить – наконец-то!). Как написал со сдержанной гордостью один из авторов: "Мы создали молекулу с переменной электропроводностью, которая может накапливать электроны по нашей команде, то есть работать как запоминающее устройство".

Прежде всего, Джеймс Тур по специальной методике синтезировал молекулярную цепочку из звеньев бензол-1,4-дитиолата длиной 14 нанометров. В нее были введены группы, которые захватывают электроны, если молекула находится "под напряжением". Сложнейшая проблема, с которой также удалось справиться, заключалась в том, что переключение должно быть обратимым химическим процессом. Для работы молекулы в качестве запоминающего элемента ее необходимо научить не просто захватывать электроны, а удерживать их только в течение заданного времени. Собственно говоря, именно в этом и состоит главное достижение Рида и Тура с коллегами.
Электрохимический (в самом строгом и буквальном смысле этого термина!) переключатель показан на рис. 2 (левая часть). Он представляет собой цепочку из трех бензольных колец, к центральному из которых с противоположных сторон присоединены группы NО 2 , и NН 2 , (на рисунке выделены цветом). Такая асимметричная молекулярная конфигурация создает электронное облако сложной формы, в результате чего возникает удивительно красивый и принципиально важный для решения поставленной задачи физический эффект – при наложении поля молекула закручивается, ее сопротивление меняется, и она начинает пропускать ток (правая часть рисунка). При снятии поля молекула раскручивается в обратную сторону и возвращается в исходное состояние. Переключатель, созданный по этому принципу, представляет собой линейную цепочку из примерно 1000 молекул нитроаминобензолтиола, расположенную между двумя металлическими контактами. Более того, замеры с использованием туннельного микроскопирования (фрагмент молекулярной цепочки был впаян между сверхтонкими иглообразными золотыми электродами; геометрия эксперимента показана на рис. 3) позволили получить рабочие параметры переключателя, которые с полным правом можно назвать молекулярной вольт-амперной характеристикой и молекулярной проводимостью (рис.4). Кривая проводимости (которая, кстати, оказалась весьма близка к расчетной) имеет четко выраженный "провал". Это позволяет переводить участки молекулы из проводящего состояния в непроводящее, и наоборот, простым изменением приложенного напряжения. Формально и фактически получен (химик, конечно, предпочтет термин "синтезирован") молекулярный триод. Действительно, это можно считать первым этапом создания молекулярной электроники.

Заключение

Хотя теоретические основы молетроники уже достаточно хорошо разработаны и созданы прототипы практически всех элементов логических схем, однако на пути реального построения молекулярного компьютера встают значительные сложности. Внешне очевидная возможность использования отдельных молекул в качестве логических элементов электронных устройств оказывается весьма проблематичной из-за специфических свойств молекулярных систем и требований, предъявляемых к логическим элементам.

В первую очередь логический элемент должен обладать высокой надежностью срабатывания при подаче управляющего воздействия. Если рассматривать оптическую связь между элементами, то в системе одна молекула - один фотон надежность переключения будет невелика из-за относительно малой вероятности перехода молекулы в возбужденное состояние. Можно пытаться преодолеть эту трудность, используя одновременно большое число квантов. Но это противоречит другому важному требованию: КПД преобразования сигнала отдельным элементом должен быть близок к единице, то есть средняя мощность реакции должна быть соизмерима со средней мощностью воздействия. В противном случае при объединении элементов в цепь вероятность их срабатывания будет уменьшаться по мере удаления от начала цепи. Кроме того, элемент должен однозначно переключаться в требуемое состояние и находиться в нем достаточно долго - до следующего воздействия. Для сравнительно простых молекул это требование, как правило, не выполняется: если переходом в возбужденное состояние можно управлять, то обратный переход может происходить спонтанно.

Однако не все так плохо. Использование больших органических молекул или их комплексов позволяет, в принципе, обойти перечисленные трудности. Например, в некоторых белках КПД электронно-оптического преобразования близок к единице. К тому же, для больших биоорганических молекул время жизни возбужденного состояния достигает десятков секунд.

Но даже в том случае, если отдельный молекулярный вычислительный элемент и не будет обладать надежностью своих кремниевых предшественников, эффективной работы будущего компьютера можно достичь, комбинируя принципы молетроники и параллельных вычислений, применяемых в суперкомпьютерах. Для этого надо заставить несколько одинаковых молекулярных логических элементов работать параллельно. Тогда неправильное срабатывание одного из них не приведет к заметному сбою в вычислениях. Современный суперкомпьютер, работающий по принципу массивного параллелелизма и имеющий многие сотни процессоров, может сохранять высокую производительность даже в том случае, если 75% из них выйдет из строя. Практически все живые системы используют принцип параллелизма. Поэтому несовершенство организмов на уровне отдельных клеток или генов не мешает им эффективно функционировать.

Сегодня в мире существует уже более десятка научно-технологических центров, занимающихся разработкой устройств молекулярной электроники. Ежегодные конференции собирают сотни специалистов в этой области.

Большой интерес к молетронике вызван не только перспективами построения компьютера, но и широкими возможностями развития новых технологий. Благодаря высокой чувствительности молекулярных электронных устройств к свету их можно использовать для создания эффективных преобразователей солнечной энергии, моделирования процесса фотосинтеза, разработки нового класса приемников изображения, принцип действия которых будет напоминать работу человеческого глаза. Молекулярные устройства можно использовать также в качестве селективных сенсоров, реагирующих только на определенный тип молекул. Такие сенсоры необходимы в экологии, промышленности, медицине. Сенсор из органических молекул значительно легче вживлять в организм человека с целью контроля за его состоянием.

Для решения стоящих перед молекулярной электроникой проблем нужны усилия широкого круга ученых, работающих в области академических знаний от коллоидной химии и биологии до теоретической физики, а также в области высоких технологий. Кроме того, требуются значительные финансовые вложения.

Необходима также подготовка новых высококвалифицированных кадров для работы в этой сложной области, лежащей на стыке наук. Но, судя по всему, лет через 10-15 она будет играть заметную роль в науке и технике.

Список используемого материала

По материалам сети Internet , статьи:

1. Гончарова Е., бакалавр биотехнологии;

2. Зайцев В., Шишлова А., физический факультет, МГУ им. М. В. Ломоносова;

3. Кригер Ю., д. ф-м. н.

Вверх