Решить линейное уравнение методом гаусса. Метод Гаусса: описание алгоритма решения системы линейных уравнений, примеры, решения. Применение метода Гаусса в теории игр

В данной статье мы:

  • дадим определение методу Гаусса,
  • разберем алгоритм действий при решении линейных уравнений, где количество уравнений совпадает c количеством неизвестных переменных, а определитель не равен нулю;
  • разберем алгоритм действий при решении СЛАУ с прямоугольной или вырожденной матрицей.

Метод Гаусса - что это такое?

Определение 1

Метод Гаусса - это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:

  • отсутствует необходимость проверять систему уравнений на совместность;
  • есть возможность решать системы уравнений, где:
  • количество определителей совпадает с количеством неизвестных переменных;
  • количество определителей не совпадает с количеством неизвестных переменных;
  • определитель равен нулю.
  • результат выдается при сравнительно небольшом количестве вычислительных операций.

Основные определения и обозначения

Пример 1

Есть система из р линейных уравнений с n неизвестными (p может быть равно n):

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,

где x 1 , x 2 , . . . . , x n - неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n - числа (действительные или комплексные), b 1 , b 2 , . . . , b n - свободные члены.

Определение 2

Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной , если наоборот - неоднородной .

Определение 3

Решение СЛАУ - совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.

Определение 4

Совместная СЛАУ - система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.

Определение 5

Определенная СЛАУ - это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.

Определение 6

Координатный вид записи:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p

Определение 7

Матричный вид записи: A X = B , где

A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n - основная матрица СЛАУ;

X = x 1 x 2 ⋮ x n - матрица-столбец неизвестных переменных;

B = b 1 b 2 ⋮ b n - матрица свободных членов.

Определение 8

Расширенная матрица - матрица, которая получается при добавлении в качестве (n + 1) столбца матрицу-столбец свободных членов и имеет обозначение Т.

T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n

Определение 9

Вырожденная квадратная матрица А - матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.

Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)

Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.

Определение 10

Прямой ход Гаусса - процесс последовательного исключения неизвестных.

Определение 11

Обратный ход Гаусса - процесс последовательного нахождения неизвестных от последнего уравнения к первому.

Алгоритм метода Гаусса:

Пример 2

Решаем систему из n линейных уравнений с n неизвестными переменными:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n

Определитель матрицы не равен нулю .

  1. a 11 не равен нулю - всегда можно добиться этого перестановкой уравнений системы;
  2. исключаем переменную x 1 из всех уравнений систему, начиная со второго;
  3. прибавим ко второму уравнению системы первое, которое умножено на - a 21 a 11 , прибавим к третьему уравнению первое умноженное на - a 21 a 11 и т.д.

После проведенных действий матрица примет вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (1) 32 x 2 + a (1) 33 x 3 + . . . + a (1) 3 n x n = b (1) 3 ⋯ a (1) n 2 x 2 + a (1) n 3 x 3 + . . . + a (1) n n x n = b (1) n ,

где a i j (1) = a i j + a 1 j (- a i 1 a 11) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i (1) = b i + b 1 (- a i 1 a 11) , i = 2 , 3 , . . . , n .

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (1) 32 x 2 + a (1) 33 x 3 + . . . + a (1) 3 n x n = b (1) 3 ⋯ a (1) n 2 x 2 + a (1) n 3 x 3 + . . . + a (1) n n x n = b (1) n

Считается, что a 22 (1) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:

  • к третьему уравнению систему прибавляем второе, которое умножено на - a (1) 42 a (1) 22 ;
  • к четвертому прибавляем второе, которое умножено на - a (1) 42 a (1) 22 и т.д.

После таких манипуляций СЛАУ имеет следующий вид :

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (2) 33 x 3 + . . . + a (2) 3 n x n = b (2) 3 ⋯ a (2) n 3 x 3 + . . . + a (2) n n x n = b (2) n ,

где a i j (2) = a (1) i j + a 2 j (- a (1) i 2 a (1) 22) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i (2) = b (1) i + b (1) 2 (- a (1) i 2 a (1) 22) , i = 3 , 4 , . . . , n . .

Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a (1) 22 x 2 + a (1) 23 x 3 + . . . + a (1) 2 n x n = b (1) 2 a (2) 33 x 3 + . . . + a (2) 3 n x n = b (2) 3 ⋯ a (n - 1) n n x n = b (n - 1) n

Примечание

После того как система приняла такой вид, можно начать обратный ход метода Гаусса :

  • вычисляем x n из последнего уравнения как x n = b n (n - 1) a n n (n - 1) ;
  • с помощью полученного x n находим x n - 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.

Пример 3

Найти решение системы уравнений методом Гаусса:

Как решать?

Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на - a 21 a 11:

1 3 , - а 31 а 11 = - - 2 3 = 2 3 и - а 41 а 11 = - 1 3 .

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 + (- 1 3) (3 x 1 + 2 x 2 + x 3 + x 4) = - 1 + (- 1 3) (- 2) - 2 x 1 - 2 x 2 - 3 x 3 + x 4 + 2 3 (3 x 1 + 2 x 2 + x 3 + x 4) = 9 + 2 3 (- 2) x 1 + 5 x 2 - x 3 + 2 x 4 + (- 1 3) (3 x 1 + 2 x 2 + x 3 + x 4) = 4 + (- 1 3) (- 2) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 - 4 3 x 3 + 5 3 x 4 = 14 3

Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2:

A 32 (1) a 22 (1) = - - 2 3 - 5 3 = - 2 5 и а 42 (1) а 22 (1) = - 13 3 - 5 3 = 13 5:

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 - 4 3 x 3 + 5 3 x 4 = 14 3 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 + (- 2 5) (- 5 3 x 2 + 11 3 x 3 - 4 3 x 4) = 23 3 + (- 2 5) (- 1 3) 13 3 x 2 - 4 3 x 3 + 5 3 x 4 + 13 5 (- 5 3 x 2 + 11 3 x 3 - 4 3 x 4) = 14 3 + 13 5 (- 1 3) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 = 19 5

Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы - а 43 (2) а 33 (2) = - 41 5 - 19 5 = 41 19:

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 = 19 5 ⇔

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 + 41 19 (- 19 5 x 3 + 11 5 x 4) = 19 5 + 41 19 39 5 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19

Обратный ход метода Гаусса:

  • из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
  • из 3-го уравнения получаем: x 3 = - 5 19 (39 5 - 11 5 x 4) = - 5 19 (39 5 - 11 5 × 7) = 38 19 = 2 ;
  • из 2-го: x 2 = - 3 5 (- 1 3 - 11 3 x 4 + 4 3 x 4) = - 3 5 (- 1 3 - 11 3 × 2 + 4 3 × 7) = - 1 ;
  • из 1-го: x 1 = 1 3 (- 2 - 2 x 2 - x 3 - x 4) = - 2 - 2 × (- 1) - 2 - 7 3 = - 9 3 = - 3 .

Ответ : x 1 = - 3 ; x 2 = - 1 ; x 3 = 2 ; x 4 = 7

Пример 4

Найти решение этого же примера методом Гаусса в матричной форме записи:

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4

Как решать?

Расширенная матрица системы представлена в виде:

x 1 x 2 x 3 x 4 3 2 1 1 1 - 1 4 - 1 - 2 - 2 - 3 1 1 5 - 1 2 - 2 - 1 9 4

Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.

Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на - a 21 a 11 = - 1 3 , - a 31 a 11 = - - 2 3 = 2 3 и н а - а 41 а 11 = - 1 3 .

Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной. Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на - а 32 (1) а 22 (1) = - 2 3 - 5 3 = - 2 5 и - а 42 (1) а 22 (1) = - 13 3 - 5 3 = 13 5:

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 - 2 3 - 7 3 5 3 | 23 3 0 13 3 - 4 3 5 3 | 14 3 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 - 2 3 + (- 2 5) (- 5 3) - 7 3 + (- 2 5) 11 3 5 3 + (- 2 5) (- 4 3) | 23 3 + (- 2 5) (- 1 3) 0 13 3 + 13 5 (- 5 3) - 4 3 + 13 5 × 11 3 5 3 + 13 5 (- 4 3) | 14 3 + 13 5 (- 1 3) ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 - 9 5 | 19 5

Теперь исключаем переменную x 3 из последнего уравнения - прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 (2) а 33 (2) = - 41 5 - 19 5 = 41 19 .

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 - 9 5 | 19 5 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 + 41 19 (- 19 5) - 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

стала диагональной, т.е. приняла следующий вид:

x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 - 5 3 0 0 | а 2 0 0 - 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 - некоторые числа.

Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на

11 5 56 19 = - 209 280 , н а - - 4 3 56 19 = 19 42 и н а - 1 56 19 = 19 56 .

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 + (- 19 56) 56 19 | - 2 + (- 19 56) 392 19 0 - 5 3 11 3 - 4 3 + 19 42 × 56 19 | - 1 3 + 19 42 × 392 19 0 0 - 19 5 11 5 + (- 209 280) 56 19 | 39 5 + (- 209 280) 392 19 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 0 | - 9 0 - 5 3 11 3 0 | 9 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

11 3 - 19 5 = 55 57 и н а - 1 - 19 5 = 5 19 .

x 1 x 2 x 3 x 4 3 2 1 0 | - 9 0 - 5 3 11 3 0 | 9 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 + 5 19 (- 19 5) 0 | - 9 + 5 19 (- 38 5) 0 - 5 3 11 3 + 55 57 (- 19 5) 0 | 9 + 55 57 (- 38 5) 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 0 | - 11 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на - 2 - 5 3 = 6 5 .

x 1 x 2 x 3 x 4 3 2 1 0 | - 11 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 + 6 5 (- 5 3) 0 0 | - 11 + 6 5 × 5 3) 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 0 0 0 | - 9 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

Полученная матрица соответствует системе уравнений

3 x 1 = - 9 - 5 3 x 2 = 5 3 - 19 5 x 3 = - 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.

Ответ: x 1 = - 3 , x 2 = - 1 , x 3 = 2 , x 4 = 7 . ​​​

Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы

Определение 2

Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.

Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.

В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.

Пример 5

На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.

Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:

x 1 + 2 x 2 - x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 - 2 x 3 + 6 x 4 = 14 x - x + 3 x + x = - 1 ⇔

x 1 + 2 x 2 - x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 - 2 x 3 + 6 x 4 + (- 2) (x 1 + 2 x 2 - x 3 + 3 x 4) = 14 + (- 2) × 7 x - x + 3 x + x + (- 1) (x 1 + 2 x 2 - x 3 + 3 x 4) = - 1 + (- 1) × 7 ⇔

⇔ x 1 + 2 x 2 - x 3 + 3 x 4 = 7 0 = 0 - 3 x 2 + 4 x 3 - 2 x 4 = - 8

Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.

Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид - некоторое число, которое отлично от нуля.

Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).

Итог:

  • В случае если при проведении прямого хода метода Гаусса одно или несколько уравнений принимают вид 0 = λ , где λ - некоторое число, которое отлично от нуля, то система несовместна.
  • Если же в конце прямого хода метода Гаусса получается система, число уравнений которой совпадает с количеством неизвестных, то такая система совместна и определена: имеет единственное решение, которое вычисляется обратным ходом метода Гаусса.
  • Если при завершении прямого хода метода Гаусса число уравнений в системе оказывается меньше количества неизвестных, то такая система совместна и имеет бесконечно количество решений, которые вычисляются при обратном ходе метода Гаусса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Решение систем линейных уравнений методом Гаусса. Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находитсяx n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.


Пример.

Решите систему линейных уравнений методом Гаусса.

Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса , состо­ящий в последовательном исключении неизвестных.

Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются приэлементарных преобразованиях уравнений системы:

    умножение обеих частей уравнения на число отличное от нуля;

    прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

    перестановка двух уравнений.

Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому , илитреугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

Предположим, что коэффициент данной системы
, в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент прибыл отличен от нуля.

Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения наи сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

Здесь
– новые значения коэффициентов и свободных членов, которые получаются после первого шага.

Аналогичным образом, считая главным элементом
, исклю­чим неизвестноеиз всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

,

где ,
,…,– главные элементы системы
.

Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида
, их отбрасывают, так как им удовлетворяют любые наборы чисел
. Если же при
появится уравнение вида, которое не имеет решений, то это свидетельствует о несовместности системы.

При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные
, которые называютсвободными . Затем выражение переменнойиз последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная
. Аналогичным образом последовательно определяются переменные
. Переменные
, выраженные через свободные переменные, называютсябазисными (зависимыми). В результате получается общее решение системы линейных уравнений.

Чтобы найти частное решение системы, свободным неизвестным
в общем решении придаются произвольные значения и вычисляются значения переменных
.

Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

.

Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных
не равно числу уравнений
.

Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу
к ступенчатому виду, легко определить ранги матрицыи расширенной матрицы
и применитьтеорему Кронекера - Капелли .

Пример 2.1 Методом Гаусса решить систему

Решение . Число уравнений
и число неизвестных
.

Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов.

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.




.

В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.

Так как , система является совместной и определенной.

Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения
. Подставим во второе уравнение и получим
.

Подставим
и
в первое уравнение, найдём


.

Пример 2.2. Исследовать систему на совместность и в случае совместности найти решение:

Решение. Применим к данной системе метод Гаусса.

Запишем расширенную матрицу системы, предварительно для удобства вычислений поменяв местами вторую и первую строку. Приведем ее к ступенчатому виду.

̴
̴
.

Найдем ранги матриц: . Так как
,
то система является несовместной, т.е. не имеет решений.

Иначе говоря, система содержит противоречивое уравнение вида:

или
, поэтому является несовместной.

Две системы линейных уравнений называются равносильными, если множество всех их решений совпадает.

Элементарные преобразования системы уравнений - это:

  1. Вычеркивание из системы тривиальных уравнений, т.е. таких, у которых все коэффициенты равны нулю;
  2. Умножение любого уравнения на число, отличное от нуля;
  3. Прибавление к любому i -му уравнению любого j -то уравнения, умноженного на любое число.

Переменная x i называется свободной, если эта переменная не является разрешенной, а вся система уравнений - является разрешенной.

Теорема. Элементарные преобразования переводят систему уравнений в равносильную.

Смысл метода Гаусса заключается в том, чтобы преобразовать исходную систему уравнений и получить равносильную разрешенную или равносильную несовместную систему.

Итак, метод Гаусса состоит из следующих шагов:

  1. Рассмотрим первое уравнение. Выберем первый ненулевой коэффициент и разделим все уравнение на него. Получим уравнение, в которое некоторая переменная x i входит с коэффициентом 1;
  2. Вычтем это уравнение из всех остальных, умножая его на такие числа, чтобы коэффициенты при переменной x i в остальных уравнениях обнулились. Получим систему, разрешенную относительно переменной x i , и равносильную исходной;
  3. Если возникают тривиальные уравнения (редко, но бывает; например, 0 = 0), вычеркиваем их из системы. В результате уравнений становится на одно меньше;
  4. Повторяем предыдущие шаги не более n раз, где n - число уравнений в системе. Каждый раз выбираем для «обработки» новую переменную. Если возникают противоречивые уравнения (например, 0 = 8), система несовместна.

В результате через несколько шагов получим либо разрешенную систему (возможно, со свободными переменными), либо несовместную. Разрешенные системы распадаются на два случая:

  1. Число переменных равно числу уравнений. Значит, система определена;
  2. Число переменных больше числа уравнений. Собираем все свободные переменные справа - получаем формулы для разрешенных переменных. Эти формулы так и записываются в ответ.

Вот и все! Система линейных уравнений решена! Это довольно простой алгоритм, и для его освоения вам не обязательно обращаться к репетитору высшей по математике. Рассмотрим пример:

Задача. Решить систему уравнений:

Описание шагов:

  1. Вычитаем первое уравнение из второго и третьего - получим разрешенную переменную x 1 ;
  2. Умножаем второе уравнение на (−1), а третье уравнение делим на (−3) - получим два уравнения, в которых переменная x 2 входит с коэффициентом 1;
  3. Прибавляем второе уравнение к первому, а из третьего - вычитаем. Получим разрешенную переменную x 2 ;
  4. Наконец, вычитаем третье уравнение из первого - получаем разрешенную переменную x 3 ;
  5. Получили разрешенную систему, записываем ответ.

Общее решение совместной системы линейных уравнений - это новая система, равносильная исходной, в которой все разрешенные переменные выражены через свободные.

Когда может понадобиться общее решение? Если приходится делать меньше шагов, чем k (k - это сколько всего уравнений). Однако причин, по которым процесс заканчивается на некотором шаге l < k , может быть две:

  1. После l -го шага получилась система, которая не содержит уравнения с номером (l + 1). На самом деле это хорошо, т.к. разрешенная система все равно получена - даже на несколько шагов раньше.
  2. После l -го шага получили уравнение, в котором все коэффициенты при переменных равны нулю, а свободный коэффициент отличен от нуля. Это противоречивое уравнение, а, следовательно, система несовместна.

Важно понимать, что возникновение противоречивого уравнения по методу Гаусса - это достаточное основание несовместности. При этом заметим, что в результате l -го шага не может остаться тривиальных уравнений - все они вычеркиваются прямо в процессе.

Описание шагов:

  1. Вычитаем первое уравнение, умноженное на 4, из второго. А также прибавляем первое уравнение к третьему - получим разрешенную переменную x 1 ;
  2. Вычитаем третье уравнение, умноженное на 2, из второго - получим противоречивое уравнение 0 = −5.

Итак, система несовместна, поскольку обнаружено противоречивое уравнение.

Задача. Исследовать совместность и найти общее решение системы:


Описание шагов:

  1. Вычитаем первое уравнение из второго (предварительно умножив на два) и третьего - получим разрешенную переменную x 1 ;
  2. Вычитаем второе уравнение из третьего. Поскольку все коэффициенты в этих уравнениях совпадают, третье уравнение превратится в тривиальное. Заодно умножим второе уравнение на (−1);
  3. Вычитаем из первого уравнения второе - получим разрешенную переменную x 2 . Вся система уравнений теперь тоже разрешенная;
  4. Поскольку переменные x 3 и x 4 - свободные, переносим их вправо, чтобы выразить разрешенные переменные. Это и есть ответ.

Итак, система совместная и неопределенная, поскольку есть две разрешенных переменных (x 1 и x 2) и две свободных (x 3 и x 4).

В данной статье метод рассматривается как способ решения Метод является аналитическим, то есть позволяет написать алгоритм решения в общем виде, а потом уже подставлять туда значения из конкретных примеров. В отличие от матричного метода или формул Крамера, при решении системы линейных уравнений методом Гаусса можно работать и с теми, что имеют решений бесконечно много. Или не имеют его вовсе.

Что значит решить методом Гаусса?

Для начала необходимо нашу систему уравнений записать в Выглядит это следующим образом. Берется система:

Коэффициенты записываются в виде таблицы, а справа отдельным столбиком - свободные члены. Столбец со свободными членами отделяется для удобства Матрица, включающая в себя этот столбец, называется расширенной.

Далее основную матрицу с коэффициентами нужно привести к верхней треугольной форме. Это основной момент решения системы методом Гаусса. Проще говоря, после определенных манипуляций матрица должна выглядеть так, чтобы в ее левой нижней части стояли одни нули:

Тогда, если записать новую матрицу опять как систему уравнений, можно заметить, что в последней строке уже содержится значение одного из корней, которое затем подставляется в уравнение выше, находится еще один корень, и так далее.

Это описание решения методом Гаусса в самых общих чертах. А что получится, если вдруг у системы нет решения? Или их бесконечно много? Чтобы ответить на эти и еще множество вопросов, необходимо рассмотреть отдельно все элементы, использующиеся при решении методом Гаусса.

Матрицы, их свойства

Никакого скрытого смысла в матрице нет. Это просто удобный способ записи данных для последующих операций с ними. Бояться их не надо даже школьникам.

Матрица всегда прямоугольная, потому что так удобнее. Даже в методе Гаусса, где все сводится к построению матрицы треугольного вида, в записи фигурирует прямоугольник, только с нулями на том месте, где нет чисел. Нули можно не записывать, но они подразумеваются.

Матрица имеет размер. Ее "ширина" - число строк (m), "длина" - число столбцов (n). Тогда размер матрицы A (для их обозначения обычно используются заглавные латинские буквы) будет обозначаться как A m×n . Если m=n, то эта матрица квадратная, и m=n - ее порядок. Соответственно, любой элемент матрицы A можно обозначить через номер его строки и столбца: a xy ; x - номер строки, изменяется , y - номер столбца, изменяется .

В - это не основной момент решения. В принципе, все операции можно выполнять непосредственно с самими уравнениями, однако запись получится куда более громоздкая, и в ней будет гораздо легче запутаться.

Определитель

Еще у матрицы есть определитель. Это очень важная характеристика. Выяснять его смысл сейчас не стоит, можно просто показать, как он вычисляется, а потом рассказать, какие свойства матрицы он определяет. Наиболее простой способ нахождения определителя - через диагонали. В матрице проводятся воображаемые диагонали; элементы, находящиеся на каждой из них, перемножаются, а затем полученные произведения складываются: диагонали с наклоном вправо - со знаком "плюс", с наклоном влево - со знаком "минус".

Крайне важно отметить, что вычислять определитель можно только у квадратной матрицы. Для прямоугольной матрицы можно сделать следующее: из количества строк и количества столбцов выбрать наименьшее (пусть это будет k), а затем в матрице произвольным образом отметить k столбцов и k строк. Элементы, находящиеся на пересечении выбранных столбцов и строк, составят новую квадратную матрицу. Если определитель такой матрицы будет числом, отличным от нуля, то назовется базисным минором первоначальной прямоугольной матрицы.

Перед тем как приступить к решению системы уравнений методом Гаусса, не мешает посчитать определитель. Если он окажется нулевым, то сразу можно говорить, что у матрицы количество решений либо бесконечно, либо их вообще нет. В таком печальном случае надо идти дальше и узнавать про ранг матрицы.

Классификация систем

Существует такое понятие, как ранг матрицы. Это максимальный порядок ее определителя, отличного от нуля (если вспомнить про базисный минор, можно сказать, что ранг матрицы - порядок базисного минора).

По тому, как обстоят дела с рангом, СЛАУ можно разделить на:

  • Совместные. У совместных систем ранг основной матрицы (состоящей только из коэффициентов) совпадает с рангом расширенной (со столбцом свободных членов). Такие системы имеют решение, но необязательно одно, поэтому дополнительно совместные системы делят на:
  • - определенные - имеющие единственное решение. В определенных системах равны ранг матрицы и количество неизвестных (или число столбцов, что есть одно и то же);
  • - неопределенные - с бесконечным количеством решений. Ранг матриц у таких систем меньше количества неизвестных.
  • Несовместные. У таких систем ранги основной и расширенной матриц не совпадают. Несовместные системы решения не имеют.

Метод Гаусса хорош тем, что позволяет в ходе решения получить либо однозначное доказательство несовместности системы (без вычисления определителей больших матриц), либо решение в общем виде для системы с бесконечным числом решений.

Элементарные преобразования

До того как приступить непосредственно к решению системы, можно сделать ее менее громоздкой и более удобной для вычислений. Это достигается за счет элементарных преобразований - таких, что их выполнение никак не меняет конечный ответ. Следует отметить, что некоторые из приведенных элементарных преобразований действительны только для матриц, исходниками которых послужили именно СЛАУ. Вот список этих преобразований:

  1. Перестановка строк. Очевидно, что если в записи системы поменять порядок уравнений, то на решение это никак не повлияет. Следовательно, в матрице этой системы также можно менять местами строки, не забывая, конечно, про столбец свободных членов.
  2. Умножение всех элементов строки на некоторый коэффициент. Очень полезно! С помощью него можно сократить большие числа в матрице или убрать нули. Множество решений, как обычно, не изменится, а выполнять дальнейшие операции станет удобнее. Главное, чтобы коэффициент не был равен нулю.
  3. Удаление строк с пропорциональными коэффициентами. Это отчасти следует из предыдущего пункта. Если две или более строки в матрице имеют пропорциональные коэффициенты, то при умножении/делении одной из строк на коэффициент пропорциональности получаются две (или, опять же, более) абсолютно одинаковые строки, и можно убрать лишние, оставив только одну.
  4. Удаление нулевой строки. Если в ходе преобразований где-то получилась строка, в которой все элементы, включая свободный член, - ноль, то такую строку можно назвать нулевой и выкинуть из матрицы.
  5. Прибавление к элементам одной строки элементов другой (по соответствующим столбцам), умноженных на некоторый коэффициент. Самое неочевидное и самое важное преобразование из всех. На нем стоит остановиться поподробнее.

Прибавление строки, умноженной на коэффициент

Для простоты понимания стоит разобрать этот процесс по шагам. Берутся две строки из матрицы:

a 11 a 12 ... a 1n | b1

a 21 a 22 ... a 2n | b 2

Допустим, необходимо ко второй прибавить первую, умноженную на коэффициент "-2".

a" 21 = a 21 + -2×a 11

a" 22 = a 22 + -2×a 12

a" 2n = a 2n + -2×a 1n

Затем в матрице вторая строка заменяется на новую, а первая остается без изменений.

a 11 a 12 ... a 1n | b1

a" 21 a" 22 ... a" 2n | b 2

Необходимо заметить, что коэффициент умножения можно подобрать таким образом, чтобы в результате сложения двух строк один из элементов новой строки был равен нулю. Следовательно, можно получить уравнение в системе, где на одну неизвестную будет меньше. А если получить два таких уравнения, то операцию можно проделать еще раз и получить уравнение, которое будет содержать уже на две неизвестных меньше. А если каждый раз превращать в ноль один коэффициент у всех строк, что стоят ниже исходной, то можно, как по ступенькам, спуститься до самого низа матрицы и получить уравнение с одной неизвестной. Это и называется решить систему методом Гаусса.

В общем виде

Пусть существует система. Она имеет m уравнений и n корней-неизвестных. Записать ее можно следующим образом:

Из коэффициентов системы составляется основная матрица. В расширенную матрицу добавляется столбец свободных членов и для удобства отделяется чертой.

  • первая строка матрицы умножается на коэффициент k = (-a 21 /a 11);
  • первая измененная строка и вторая строка матрицы складываются;
  • вместо второй строки в матрицу вставляется результат сложения из предыдущего пункта;
  • теперь первый коэффициент в новой второй строке равен a 11 × (-a 21 /a 11) + a 21 = -a 21 + a 21 = 0.

Теперь выполняется та же серия преобразований, только участвуют первая и третья строки. Соответственно, в каждом шаге алгоритма элемент a 21 заменяется на a 31 . Потом все повторяется для a 41 , ... a m1 . В итоге получается матрица, где в строках первый элемент равен нулю. Теперь нужно забыть о строке номер один и выполнить тот же алгоритм, начиная со второй строки:

  • коэффициент k = (-a 32 /a 22);
  • с "текущей" строкой складывается вторая измененная строка;
  • результат сложения подставляется в третью, четвертую и так далее строки, а первая и вторая остаются неизменными;
  • в строках матрицы уже два первых элемента равны нулю.

Алгоритм надо повторять, пока не появится коэффициент k = (-a m,m-1 /a mm). Это значит, что в последний раз алгоритм выполнялся только для нижнего уравнения. Теперь матрица похожа на треугольник, или имеет ступенчатую форму. В нижней строчке имеется равенство a mn × x n = b m . Коэффициент и свободный член известны, и корень выражается через них: x n = b m /a mn . Полученный корень подставляется в верхнюю строку, чтобы найти x n-1 = (b m-1 - a m-1,n ×(b m /a mn))÷a m-1,n-1 . И так далее по аналогии: в каждой следующей строке находится новый корень, и, добравшись до "верха" системы, можно отыскать множество решений . Оно будет единственным.

Когда нет решений

Если в одной из матричных строк все элементы, кроме свободного члена, равны нулю, то уравнение, соответствующее этой строке, выглядит как 0 = b. Оно не имеет решения. И поскольку такое уравнение заключено в систему, то и множество решений всей системы - пустое, то есть она является вырожденной.

Когда решений бесконечное количество

Может получиться так, что в приведенной треугольной матрице нет строк с одним элементом-коэффициентом уравнения, и одним - свободным членом. Есть только такие строки, которые при переписывании имели бы вид уравнения с двумя или более переменными. Значит, у системы имеется бесконечное число решений. В таком случае ответ можно дать в виде общего решения. Как это сделать?

Все переменные в матрице делятся на базисные и свободные. Базисные - это те, которые стоят "с краю" строк в ступенчатой матрице. Остальные - свободные. В общем решении базисные переменные записываются через свободные.

Для удобства матрица сначала переписывается обратно в систему уравнений. Потом в последнем из них, там, где точно осталась только одна базисная переменная, она остается с одной стороны, а все остальное переносится в другую. Так делается для каждого уравнения с одной базисной переменной. Потом в остальные уравнения, там, где это возможно, вместо базисной переменной подставляется полученное для нее выражение. Если в результате опять появилось выражение, содержащее только одну базисную переменную, она оттуда опять выражается, и так далее, пока каждая базисная переменная не будет записана в виде выражения со свободными переменными. Это и есть общее решение СЛАУ.

Можно также найти базисное решение системы - дать свободным переменным любые значения, а потом для этого конкретного случая посчитать значения базисных переменных. Частных решений можно привести бесконечно много.

Решение на конкретных примерах

Вот система уравнений.

Для удобства лучше сразу составить ее матрицу

Известно, что при решении методом Гаусса уравнение, соответствующее первой строке, в конце преобразований останется неизменным. Поэтому выгодней будет, если левый верхний элемент матрицы будет наименьшим - тогда первые элементы остальных строк после операций обратятся в ноль. Значит, в составленной матрице выгодно будет на место первой строки поставить вторую.

вторая строка: k = (-a 21 /a 11) = (-3/1) = -3

a" 21 = a 21 + k×a 11 = 3 + (-3)×1 = 0

a" 22 = a 22 + k×a 12 = -1 + (-3)×2 = -7

a" 23 = a 23 + k×a 13 = 1 + (-3)×4 = -11

b" 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

третья строка: k = (-a 3 1 /a 11) = (-5/1) = -5

a" 3 1 = a 3 1 + k×a 11 = 5 + (-5)×1 = 0

a" 3 2 = a 3 2 + k×a 12 = 1 + (-5)×2 = -9

a" 3 3 = a 33 + k×a 13 = 2 + (-5)×4 = -18

b" 3 = b 3 + k×b 1 = 3 + (-5)×12 = -57

Теперь, чтобы не запутаться, необходимо записать матрицу с промежуточными результатами преобразований.

Очевидно, что такую матрицу можно сделать более удобной для восприятия с помощью некоторых операций. Например, из второй строки можно убрать все "минусы", умножая каждый элемент на "-1".

Стоит также заметить, что в третьей строке все элементы кратны трем. Тогда можно сократить строку на это число, умножая каждый элемент на "-1/3" (минус - заодно, чтобы убрать отрицательные значения).

Выглядит гораздо приятнее. Теперь надо оставить в покое первую строку и поработать со второй и третьей. Задача - прибавить к третьей строке вторую, умноженную на такой коэффициент, чтобы элемент a 32 стал равен нулю.

k = (-a 32 /a 22) = (-3/7) = -3/7 (если в ходе некоторых преобразований в ответе получилось не целое число, рекомендуется для соблюдения точности вычислений оставить его "как есть", в виде обыкновенной дроби, а уже потом, когда получены ответы, решать, стоит ли округлять и переводить в другую форму записи)

a" 32 = a 32 + k×a 22 = 3 + (-3/7)×7 = 3 + (-3) = 0

a" 33 = a 33 + k×a 23 = 6 + (-3/7)×11 = -9/7

b" 3 = b 3 + k×b 2 = 19 + (-3/7)×24 = -61/7

Снова записывается матрица с новыми значениями.

1 2 4 12
0 7 11 24
0 0 -9/7 -61/7

Как видно, полученная матрица уже имеет ступенчатый вид. Поэтому дальнейшие преобразования системы по методу Гаусса не требуются. Что здесь можно сделать, так это убрать из третьей строки общий коэффициент "-1/7".

Теперь все красиво. Дело за малым - записать матрицу опять в виде системы уравнений и вычислить корни

x + 2y + 4z = 12 (1)

7y + 11z = 24 (2)

Тот алгоритм, по которому сейчас будут находиться корни, называется обратным ходом в методе Гаусса. В уравнении (3) содержится значение z:

y = (24 - 11×(61/9))/7 = -65/9

И первое уравнение позволяет найти x:

x = (12 - 4z - 2y)/1 = 12 - 4×(61/9) - 2×(-65/9) = -6/9 = -2/3

Такую систему мы имеем право назвать совместной, да еще и определенной, то есть имеющей единственное решение. Ответ записывается в следующей форме:

x 1 = -2/3, y = -65/9, z = 61/9.

Пример неопределенной системы

Вариант решения определенной системы методом Гаусса разобран, теперь необходимо рассмотреть случай, если система неопределенная, то есть для нее можно найти бесконечно много решений.

х 1 + х 2 + х 3 + х 4 + х 5 = 7 (1)

3х 1 + 2х 2 + х 3 + х 4 - 3х 5 = -2 (2)

х 2 + 2х 3 + 2х 4 + 6х 5 = 23 (3)

5х 1 + 4х 2 + 3х 3 + 3х 4 - х 5 = 12 (4)

Сам вид системы уже настораживает, потому что количество неизвестных n = 5, а ранг матрицы системы уже точно меньше этого числа, потому что количество строк m = 4, то есть наибольший порядок определителя-квадрата - 4. Значит, решений существует бесконечное множество, и надо искать его общий вид. Метод Гаусса для линейных уравнений позволяет это сделать.

Сначала, как обычно, составляется расширенная матрица.

Вторая строка: коэффициент k = (-a 21 /a 11) = -3. В третьей строке первый элемент - еще до преобразований, поэтому не надо ничего трогать, надо оставить как есть. Четвертая строка: k = (-а 4 1 /а 11) = -5

Умножив элементы первой строки на каждый их коэффициентов по очереди и сложив их с нужными строками, получаем матрицу следующего вида:

Как можно видеть, вторая, третья и четвертая строки состоят из элементов, пропорциональных друг другу. Вторая и четвертая вообще одинаковые, поэтому одну из них можно убрать сразу, а оставшуюся умножить на коэффициент "-1" и получить строку номер 3. И опять из двух одинаковых строк оставить одну.

Получилась такая матрица. Пока еще не записана система, нужно здесь определить базисные переменные - стоящие при коэффициентах a 11 = 1 и a 22 = 1, и свободные - все остальные.

Во втором уравнении есть только одна базисная переменная - x 2 . Значит, ее можно выразить оттуда, записав через переменные x 3 , x 4 , x 5 , являющиеся свободными.

Подставляем полученное выражение в первое уравнение.

Получилось уравнение, в котором единственная базисная переменная - x 1 . Проделаем с ней то же, что и с x 2 .

Все базисные переменные, которых две, выражены через три свободные, теперь можно записывать ответ в общем виде.

Также можно указать одно из частных решений системы. Для таких случаев в качестве значений для свободных переменных выбирают, как правило, нули. Тогда ответом будет:

16, 23, 0, 0, 0.

Пример несовместной системы

Решение несовместных систем уравнений методом Гаусса - самое быстрое. Оно заканчивается сразу же, как только на одном из этапов получается уравнение, не имеющее решения. То есть этап с вычислением корней, достаточно долгий и муторный, отпадает. Рассматривается следующая система:

x + y - z = 0 (1)

2x - y - z = -2 (2)

4x + y - 3z = 5 (3)

Как обычно, составляется матрица:

1 1 -1 0
2 -1 -1 -2
4 1 -3 5

И приводится к ступенчатому виду:

k 1 = -2k 2 = -4

1 1 -1 0
0 -3 1 -2
0 0 0 7

После первого же преобразования в третьей строке содержится уравнение вида

не имеющее решения. Следовательно, система несовместна, и ответом будет пустое множество.

Преимущества и недостатки метода

Если выбирать, каким методом решать СЛАУ на бумаге ручкой, то метод, который был рассмотрен в этой статье, выглядит наиболее привлекательно. В элементарных преобразованиях гораздо труднее запутаться, чем в том случается, если приходится искать вручную определитель или какую-нибудь хитрую обратную матрицу. Однако, если использовать программы для работы с данными такого типа, например, электронные таблицы, то оказывается, что в таких программах уже заложены алгоритмы вычисления основных параметров матриц - определитель, миноры, обратная и и так далее. А если быть уверенным в том, что машина посчитает эти значения сама и не ошибется, целесообразней использовать уже матричный метод или формул Крамера, потому что их применение начинается и заканчивается вычислением определителей и обратными матрицами.

Применение

Поскольку решение методом Гаусса представляет из себя алгоритм, а матрица - это, фактически, двумерный массив, его можно использовать при программировании. Но поскольку статья позиционирует себя, как руководство "для чайников", следует сказать, что самое простое, куда метод можно запихнуть - это электронные таблицы, например, Excel. Опять же, всякие СЛАУ, занесенные в таблицу в виде матрицы, Excel будет рассматривать как двумерный массив. А для операций с ними существует множество приятных команд: сложение (складывать можно только матрицы одинаковых размеров!), умножение на число, перемножение матриц (также с определенными ограничениями), нахождение обратной и транспонированной матриц и, самое главное, вычисление определителя. Если это трудоемкое занятие заменить одной командой, можно гораздо быстрее определять ранг матрицы и, следовательно, устанавливать ее совместность или несовместность.

Вверх