Основной закон вращательного движения твердого тела. Динамика вращательного движения. Вставьте пропущенное слово

Для вывода этого закона рассмотрим простейший случай вращательного движения материальной точки. Разложим силу, действующую на материальную точку на две составляющие: нормальную -и касательную -(рис. 4.3). Нормальная составляющая силы приведёт к появлению нормального (центростремительного) ускорения: ; , гдеr = ОА - радиус окружности.

Касательная сила вызовет появление касательного ускорения. В соответствии со вторым законом Ньютона F t =ma t или F cos a=ma t .

Выразим касательное ускорение через угловое: a t =re. Тогда F cos a=mre. Умножим это выражение на радиус r: Fr cos a=mr 2 e. Введём обозначение r cos a = l, где l - плечо силы, т.е. длина перпендикуляра, опущенного из оси вращения на линию действия силы . Посколькуmr 2 =I - момент инерции материальной точки, а произведение=Fl= M - момент силы, то

Произведение момента силы М на время её действия dt называется импульсом момента силы. Произведение момента инерции I на угловую скоростьw называется моментом импульса тела: L=Iw. Тогда основной закон динамики вращательного движения в форме (4.5) можно сформулировать следующим образом: импульс момента силы равен изменению момента импульса тела. В такой формулировке этот закон аналогичен второму закону Ньютона в виде (2.2).

Конец работы -

Эта тема принадлежит разделу:

Краткий курс физики

Министерство образования и науки Украины.. одесская национальная морская академия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные единицы СИ
В настоящее время общепринятой является Международная система единиц - СИ. Эта система содержит семь основных единиц: метр, килограмм, секунда, моль, ампер, кельвин, кандела и две дополнительные -

Механика
Механика - наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними. Под механическим движением понимают изменение с течением времени взаимного пол

Нормальное и касательное ускорения
Рис. 1.4 Движение материальной точки по криволинейной траект

Законы Ньютона
Динамика - раздел механики, в котором изучается движение материальных тел под воздействием приложенных к ним сил. В основе механики лежат законы Ньютона. Первый закон Ньютона

Закон сохранения импульса
Рассмотрим вывод закона сохранения импульса на основе второго и третьего законов Ньютона.

Связь между работой и изменением кинетической энергии
Рис. 3.3 Пусть тело массой т движется вдоль оси х под

Связь между работой и изменением потенциальной энергии
Рис. 3.4 Эту связь мы установим на примере работы силы тяжес

Закон сохранения механической энергии
Рассмотрим замкнутую консервативную систему тел. Это означает, что на тела системы не действуют внешние силы, а внутренние силы по своей природе являются консервативными. Полной механическ

Соударения
Рассмотрим важный случай взаимодействия твёрдых тел - соударения. Соударением (ударом) называется явление конечного изменения скоростей твёрдых тел за весьма малые промежутки времени при их непо

Закон сохранения момента импульса
Рассмотрим изолированное тело, т.е. такое тело на которое не действует внешний момент сил. Тогда Mdt = 0 и из (4.5) следует d(Iw)=0, т.е. Iw=const. Если изолированная система состоит

Гироскоп
Гироскопом называется симметричное твёрдое тело, вращающееся вокруг оси, совпадающей с осью симметрии тела, проходящей через центр масс, и соответствующей наибольшему собственному моменту инерции.

Общая характеристика колебательных процессов. Гармонические колебания
Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени. В технике устройства, использующие колебательные процессы могут выполнять оп

Колебания пружинного маятника
Рис. 6.1 Укрепим на конце пружины тело массой m, которое мож

Энергия гармонического колебания
Рассмотрим теперь на примере пружинного маятника процессы изменения энергии в гармоническом колебании. Очевидно, что полная энергия пружинного маятника W=Wk+Wp, где кинетическая

Сложение гармонических колебаний одинакового направления
Решение ряда вопросов, в частности, сложение нескольких колебаний одинакового направления, значительно облегчается, если изображать колебания графически, в виде векторов на плоскости. Полученная та

Затухающие колебания
В реальных условиях в системах, совершающих колебания, всегда присутствуют силы сопротивления. В результате система постепенно расходует свою энергию на выполнение работы против сил сопротивления и

Вынужденные колебания
В реальных условиях колеблющаяся система постепенно теряет энергию на преодоление сил трения, поэтому колебания являются затухающими. Чтобы колебания были незатухающими, необходимо каким-то образом

Упругие (механические) волны
Процесс распространения возмущений в веществе или поле, сопровождающийся переносом энергии, называется волной. Упругие волны - процесс распространения в упругой среде механически

Интерференция волн
Интерференцией называется явление наложения волн от двух когерентных источников, в результате которого происходит перераспределение интенсивности волн в пространстве, т.е. возникают интерференци

Стоячие волны
Частным случаем интерференции является образование стоячих волн. Стоячие волны возникают при интерференции двух встречных когерентных волн с одинаковой амплитудой. Такая ситуация может возни

Эффект Допплера в акустике
Звуковыми волнами называют упругие волны с частотами от 16 до 20000 Гц, воспринимаемые органами слуха человека. Звуковые волны в жидких и газообразных средах являются продольными. В твёрды

Основное уравнение молекулярно-кинетической теории газов
Рассмотрим в качестве простейшей физической модели идеальный газ. Идеальным называется такой газ, для которого выполняются следующие условия: 1) размеры молекул настолько малы, ч

Распределение молекул по скоростям
Рис.16.1 Предположим, чтонам удалось измерить скорости всех

Барометрическая формула
Рассмотрим поведение идеального газа в поле силы тяжести. Как известно, по мере подъёма от поверхности Земли давление атмосферы уменьшается. Найдём зависимость давления атмосферы от высоты

Распределение Больцмана
Выразим давление газа на высотах h иh0 через соответствующее число молекул в единице объёмап ип0, считая, что на разных высотахT=const: P =

Первое начало термодинамики и его применение к изопроцессам
Первое начало термодинамики - это обобщение закона сохранения энергии с учётом тепловых процессов. Его формулировка: количество теплоты, сообщённое системе, расходуется на выполнение работы

Число степеней свободы. Внутренняя энергия идеального газа
Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при её движении в п

Адиабатный процесс
Адиабатным называется процесс, происходящий без теплообмена с окружающей средой. В адиабатном процессеdQ = 0, поэтому первое начало термодинамики применительно к этому процессу прин

Обратимые и необратимые процессы. Круговые процессы (циклы). Принцип действия тепловой машины
Обратимыми называются такие процессы, которые удовлетворяют следующим условиям. 1. После прохождения этих процессов и возвращения термодинамической системы в исходное состояние в

Идеальная тепловая машина Карно
Рис. 25.1 В 1827 г. французский военный инженер С. Карно, ре

Второе начало термодинамики
Первое начало термодинамики, которое является обобщением закона сохранения энергии с учётом тепловых процессов, не указывает на направленность протекания различных процессов в природе. Так, первое

Невозможен процесс, единственным результатом которого была бы передача теплоты от холодного тела к горячему
В холодильной машине теплота передаётся от холодного тела (морозильной камеры) в более нагретую окружающую среду. Казалось бы, что это противоречит второму началу термодинамики. На самом деле проти

Энтропия
Введём теперь новый параметр состояния термодинамической системы - энтропию, которая принципиально отличается от других параметров состояния направленностью своего изменения. Элементарное измене

Дискретность электрического заряда. Закон сохранения электрического заряда
Источником электростатического поля служит электрический заряд - внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия.

Энергия электростатического поля
Найдём вначале энергию заряженного плоского конденсатора. Очевидно, что эта энергия численно равна работе, которую нужно совершить, чтобы разрядить конденсатор.

Основные характеристики тока
Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила тока численно равна заряду, прошедшему через поперечное сечение проводника за единицу

Закон Ома для однородного участка цепи
Однородным называется участок цепи, не содержащий источника ЭДС. Ом экспериментально установил, что сила тока на однородном участке цепи пропорциональна напряжению и обратно пропорц

Закон Джоуля - Ленца
Джоуль и независимо от него Ленц экспериментально установили, что количество теплоты, выделенной в проводнике с сопротивлением R за время dt, пропорционально квадрату силы тока, сопротивлен

Правила Кирхгофа
Рис. 39.1 Для расчёта сложных цепей постоянного тока применя

Контактная разность потенциалов
Если два разнородных металлических проводника привести в контакт, то электроны получают возможность переходить из одного проводника в другой и обратно. Равновесное состояние такой системы

Эффект Зеебека
Рис. 41.1 В замкнутой цепи из двух разнородных металлов на г

Эффект Пельтье
Второе термоэлектрическое явление - эффект Пельтъе состоит в том, что при пропускании электрического тока через контакт двух разнородных проводников в нём происходит выделение или поглощени

Основания и фундаменты рассчитывают по 2 предельным состояниям

По несущей способности: N – заданная расчетная нагрузка на основание в наиболее невыгодной комбинации; - несущая способность (предельная нагрузка) основания для данного направления нагрузки N ; - коэффициент условий работы основания (<1); - коэффициент надежности (>1).
По предельным деформациям: - расчетная абсолютная осадка фундамента; - расчетная относительная разность осадок фундаментов; , - предельные величины, соответственно абсолютной и относительной разности осадок фундаментов (СНиП 2.02.01-83*)

Динамика вращательного движения

Предисловие

Обращаю внимание студентов на то, что ЭТОТ материал в школе не рассматривался АБСОЛЮТНО (кроме понятия момента силы).

1. Закон динамики вращательного движения

a. Закон динамики вращательного движения

b. Момент силы

c. Момент пары сил

d. Момент инерции

2. Моменты инерции некоторых тел:

a. Кольцо (тонкостенный цилиндр)

b. Толстостенный цилиндр

c. Сплошной цилиндр

e. Тонкий стержень

3. Теорема Штейнера

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса

5. Работа при вращательном движении

6. Кинетическая энергия вращения

7. Сопоставление величин и законов для поступательного и вращательного движения

1a. Рассмотрим твердое тело, которое может вращаться вокруг неподвижной оси ОО (рис.3.1). Разобьем это твердое тело на отдельные элементарные массы Δm i . Равнодействующую всех сил, приложенных к Δm i , обозначим через . Достаточно рассмотреть случай, когда сила лежит в плоскости, перпендикулярной оси вращения: составляющие сил, параллельные оси, не могут влиять на вращение тела, так как ось закреплена. Тогда уравнение второго закона Ньютона для касательных составляющих силы и ускорения запишется в виде:

Нормальная составляющая силы обеспечивает центростремительное ускорение и на угловое ускорение не влияет. Из (1.27): ,где – радиус вращения i -той точки. Тогда

Умножим обе части (3.2) на :

Заметим, что

где α – угол между вектором силы и радиус-вектором точки (рис.3.1), – перпендикуляр, опущенный на линию действия силы из центра вращения (плечо силы). Введём понятие момента силы .

1b. Моментом силы относительно оси называется вектор, направленный по оси вращения и связанный с направлением силы правилом буравчика, модуль которого равен произведению силы на ее плечо: . Плечо силы l относительно оси вращения – это кратчайшее расстояние от линии действия силы до оси вращения. Размерность момента силы:

В векторной форме момент силы относительно точки:

Вектор момента силы перпендикулярен и силе, и радиус-вектору точки её приложения:

Если вектор силы перпендикулярен оси, то вектор момента силы направлен по оси по правилу правого винта, а величина момента силы относительно этой оси (проекция на ось) определяется формулой (3.4):

Момент силы зависит и от величины силы, и от плеча силы. Если сила параллельна оси, то .

1c. Пара сил – это две равные по величине и противоположные по направлению силы, линии действия которых не совпадают (рис.3.2). Плечо пары сил – это расстояние между линиями действия сил. Найдём суммарный момент пары сил и () в проекции на ось, проходящую через точку О:

То есть момент пары сил равен произведению величины силы на плкчо пары:

Вернёмся к (3.3). С учётом (3.4) и (3.6):

1d. Определение: скалярная величина , равная произведению массы материальной точки на квадрат ее расстояния до оси, называется моментом инерции материальной точки относительно оси ОО:

Размерность момента инерции

Векторы и совпадают по направлению с осью вращения, связаны с направлением вращения по правилу буравчика, поэтому равенство (3.9) можно переписать в векторной форме:

Просуммируем (3.10) по всем элементарным массам, на которые разбито тело:

Здесь учтено, что угловое ускорение всех точек твердого тела одинаково, и его можно вынести за знак суммы. В левой части равенства стоит сумма моментов всех сил (и внешних, и внутренних), приложенных к каждой точке тела. Но по третьему закону Ньютона, силы, с которыми точки тела взаимодействуют друг с другом (внутренние силы), равны по величине и противоположны по направлению и лежат на одной прямой, поэтому их моменты компенсируют друг друга. Таким образом, в левой части (3.11) остается суммарный момент только внешних сил: .

Сумма произведений элементарных масс на квадрат их расстояний от оси вращения называется моментом инерции твердого тела относительно данной оси:

Таким образом, ; – это и есть основной закон динамики вращательного движения твёрдого тела (аналог второго закона Ньютона ): угловое ускорение тела прямо пропорционально суммарному моменту внешних сил и обратно пропорционально моменту инерции тела :

Момент инерции I твердого тела является мерой инертных свойств твердого тела при вращательном движении и аналогичен массе тела во втором законе Ньютона. Он существенно зависит не только от массы тела, но и от ее распределения относительно оси вращения (в направлении, перпендикулярном оси).

В случае непрерывного распределения массы сумма в (3.12) сводится к интегралу по всему объему тела:

2a. Момент инерции тонкого кольца относительно оси, проходящей через его центр перпендикулярно плоскости кольца.

поскольку для любого элемента кольца его расстояние до оси одинаково и равно радиусу кольца: .

2b. Толстостенный цилиндр (диск) с внутренним радиусом и внешним радиусом .

Вычислим момент инерции однородного диска плотностью ρ , высотой h, внутренним радиусом и внешним радиусом (рис.3.3) относительно оси, проходящей через центр масс перпендикулярно плоскости диска. Разобьем диск на тонкие кольца толщиной и высотой так, что внутренний радиус кольца равен , внешний – . Объем такого кольца , где – площадь основания тонкого кольца. Его масса:

Подставим в (3.14) и проинтегрируем по r ():


Масса диска , тогда окончательно:

2c. Сплошной цилиндр (диск).

В частном случае сплошного диска или цилиндра радиусом R подставим в (3.17) R 1 =0, R 2 =R и получим:

Момент инерции шара радиуса R и массой относительно оси, проходящей через его центр (рис.3.4), равен (без доказательства):

2e. Момент инерции тонкого стержня массой и длиной относительно оси, проходящей через его конец перпендикулярно стержню (рис.3.5).

Стержень разобьём на бесконечно малые участки длиной . Масса такого участка . Подставим в (3.14) и проинтегрируем от 0 до :

Если ось проходит через центр стержня перпендикулярно ему, можно рассчитать момент инерции половины стержня по (3.20) и затем удвоить:

3. Если ось вращения не проходит через центр масс тела (рис.3.6), вычисления по формуле (3.14) могут быть довольно сложными. В этом случае расчет момента инерции облегчается применением теоремы Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции I c тела относительно оси, проходящей через центр масс тела параллельно данной оси, и произведения массы тела на квадрат расстояния между осями:

Посмотрим, как работает теорема Штейнера, если применить её к стержню:

Нетрудно убедиться, что получилось тождество, поскольку в этом случае расстояние между осями равно половине длины стержня .

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса.

Из закона динамики вращательного движения и определения углового ускорения следует:

Если , то . Введём момент импульса твёрдого тела как

Соотношение (3.24) – это основной закон динамики твёрдого тела для вращательного движения. Его можно переписать так:

и тогда это будет аналог второго закона Ньютона для поступательного движения в импульсной форме (2.5)

Выражение (3.24) можно проинтегрировать:

и сформулировать закон изменения момента импульса: изменение момента импульса тела равно импульсу суммарного момента внешних сил . Величина называется импульсом момента силы и аналогична импульсу силы в формулировке второго закона Ньютона для поступательного движения (2.2) ; момент импульса является аналогом импульса .

Размерность момента импульса

Момент импульса твёрдого тела относительно его оси вращения – это вектор, направленный по оси вращения по правилу буравчика.

Момент импульса материальной точки относительно точки О (рис.3.6) – это:

где – радиус-вектор материальной точки, – её импульс. Вектор момента импульса направлен по правилу буравчика перпендикулярно плоскости, в которой лежат векторы и : на рис.3.7 – к нам из-за рисунка. Величина момента импульса

Твёрдое тело, вращающееся относительно оси, разобьём на элементарные массы и просуммируем по всему телу моменты импульса каждой массы (то же самое можно записать в виде интеграла; это непринципиально):

Поскольку угловая скорость всех точек одинакова и направлена по оси вращения, то можно записать в векторной форме:

Таким образом, доказана эквивалентность определений (3.23) и (3.26).

Если суммарный момент внешних сил равен нулю, то момент импульса системы не изменяется (см.3.25):

. Это закон сохранения момента импульса . Это возможно, когда:

а) система замкнута (или );

б) у внешних сил нет касательных составляющих (вектор силы проходит через ось/центр вращения);

в) внешние силы параллельны закреплённой оси вращения.

Примеры использования/действия закона сохранения момента импульса:

1. гироскоп;

2. скамья Жуковского;

3. фигуристка на льду.

5. Работа при вращательном движении.

Пусть тело повернулось на угол под действием силы и угол между перемещением и силой равен ; – радиус-вектор точки приложения силы (рис.3.8), тогда работа силы равна:

Вопрос

Материальная точка - тело, размерами которого в данных условиях движения можно пренебречь.

Абсолютно твердым телом называется тело, деформациями которого по условиям задачи можно пренебречь. У абсолютно твердого тела расстояние между любыми его точками с течением времени не меняется. В термодинамическом смысле такое тело не обязательно должно быть твердым. Произвольное движение твердого тела может быть разбито на поступательное и вращательное вокруг неподвижной точки.

Системы отсчёта. Чтобы описать механическое движение тела (точки), нужно знать его координаты в любой момент времени. Для определения координат материальной точки следует, прежде всего, выбрать тело отсчёта и связать с ним систему координат. Для определения положения материальной точки в любой момент времени необходимо также задать начало отсчёта времени. Система координат, тело отсчёта и указание начала отсчёта времени образуют систему отсчёта , относительно которой рассматривается движение тела. Траектория движения тела, пройденный путь и перемещение зависят от выбора системы отсчёта.

Кинематика точки - раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Путь и перемещение. Линия, по которой движется точка тела, называется траекторией движения . Длина траектории называется пройденным путём . Вектор, соединяющий начальную и конечную точки траектории называется перемещением. Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым, если скорость при неравномерном движении в течение этого промежутка не менялась. Определяющая формула скорости имеет вид v = s/t. Единица скорости - м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле a=Δv/Δt. Единица ускорения – м/с 2

Рисунок 1.4.1. Проекции векторов скорости и ускорения на координатные оси. a x = 0, a y = –g

Если путь s , пройденный материальной точкой за промежуток времени t 2 -t 1 , разбить на достаточно малые участки Ds i , то для каждого i -го участка выполняется условие

Тогда весь путь можно записать в виде суммы

Сре́днее значе́ние - числовая характеристика множества чисел или функций; - некоторое число, заключённое между наименьшим и наибольшим из их значений.

Нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизна траектории в данной точке.

Тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Тангенциальное ускорение характеризует быстроту изменения скорости движения по численному значению и направлена по касательной к траектории.

Следовательно

Нормальное ускорение характеризует быстроту изменения скорости по направлению. Вычислим вектор:

Вопрос

Кинематика вращательного движения.

Движение тела может быть как поступательным, так и вращательным. В этом случае тело представляется в виде системы жестко связанных между собой материальных точек.

При поступательном движение любая прямая, проведенная в теле, перемещается параллельно самой се­бе. По форме траектории поступательное движение может быть прямолинейным и криволинейным. При поступательном движении все точки твердого тела за один и тот же промежуток времени совершают равные по величине и направлению перемещения. Следовательно,скорости и ускорения всех точек тела в любой момент времени также одинаковы. Для описания поступательного движения достаточно определить движение одной точки.

Вращательным движением твёрдого тела вокруг неподвижной оси называется такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной прямой (ось вращения).

Ось вращения может проходить через тело или лежать за его пределами. Если ось вращения проходит сквозь тело, то точки, лежа­щие на оси, при вращении тела остаются в покое. Точки твёрдого тела, находящиеся на разных расстояниях от оси вращения за одинаковые промежутки времени проходят различные расстояния и, следовательно, имеют различные линейные скорости.

При вращении тела вокруг неподвижной оси точки тела за один и тот же промежуток времени совершают одно и тоже угловое перемещение . Модуль равен углу поворота тела вокруг оси за время , направления вектора углового перемещения с направлением вращения тела связано правилом винта: если совместить направления вращения винта с направлением вращения тела, то вектор будет совпадать с поступательным движением винта. Вектор направлен вдоль оси вращения.

Быстроту изменения углового перемещения определяет угловая скорость - ω. По аналогии с линейной скоростью вводят понятия средней и мгновенной угловой скорости :

Угловая скорость - величина векторная.

Быстроту изменения угловой скорости характеризует среднее и мгновенное

угловое ускорение .

Вектор и может совпадать с вектором , и быть про­тивоположным ему

Вращательным наз. такой вид движения при котором каждая т. Твердого тела в процессе своего движения описывает окружность.У.с –наз.величина равная первой производной от угла поворота от времени W=dφ/dt физический смысл у.с. изменение угла поворота за единицу времени у.с. у всех т. Тела будет одинакова Угловое ускорение(ε) –физическая величина числено равная изменению угловой скорости за единицу времени ε=dw/dt, W=dφ/dt ε=dw/dt=d 2 φ/dt связь. ε V=Wr a t =dv/dt=d/dt(Wr)=r*dw/dt(ε) a t =[ε*r] a n = V 2 /r =W 2 *r 2 /r a n =W 2 r

Линейная скорость показывает какой путь проходится за единицу времени при движении по окружности, линейное ускорение показывает на сколько изменяется линейная скорость в единицу времени. Угловая скорость показывает на какой угол перемещается тело при движении по окружности, угловое ускорение показывает на сколько изменяется угловая скорость в единицу времени. Vл = R*w; a = R*(бета)

Вопрос

Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.

Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.

Первый закон Ньютона

Существуют такие системы отсчета, относительно которых тела сохраняют свою скорость постоянной, если на них не действуют другие тела и поля (или их действие взаимно скомпенсировано).

Массой тела называется количественная характеристика инертности тела. Масса - скал. величина, обл. свойствами:

Не зависит от скорости движ. тела

Масса – величина аддитивная, т.е. масса системы рана сумме масс мат. т., вход в состав этой системы

При любых воздействиях выполняется закон сохранения массы: суммарная масса взаимодействующих тел до взаимодействия и после равны между собой.

i=1
n
-центр масс системы (ц. инерции)- точка, в которой может считаться масса всего тела при поступательном движении данного тела. Это точка С, радиус-вектор r c которой равен r c =m -1 åm i ×r i . Центр масс системы движется как мат.т., в которой сосредоточена масса всей системы и на которую действует сила, равная главному вектору внешних сил, действующих на всю систему.

Импульсом , или количеством движения мат.т. называется векторная величина p, равная произведению массы m мат. точки на её скорость. Импульс системы равен p=mV c .

Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу, как мерило проявления инерции материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Второй закон Ньютона утверждает, что

В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально приложенной к ней силе и обратно пропорционально её массе.
При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где - ускорение материальной точки; - сила, приложенная к материальной точке; m - масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна действующей на неё силе.

Где - импульс точки, где - скорость точки; t - время;

Производная импульса по времени.

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия.

Сам закон:

Тела действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению:

Сила тяготения

В соответствии с этим законом, два тела притягиваются друг к другу с силой, которая прямо пропорциональна массам этих тел m 1 и m 2 и обратно пропорциональна квадрату расстояния между ними:

Здесь r − расстояние между центрами масс данных тел, G − гравитационная постоянная, значение которой, найденное экспериментальным путем, составляет .

Сила гравитационного притяжения является центральной силой , т.е. направлена вдоль прямой, проходящей через центры взаимодействующих тел.

ВОПРОС

Частным, но крайне важным для нас видом силы всемирного тяготения является сила притяжения тел к Земле . Эту силу называют силой тяжести . Согласно закону всемирного тяготения, она выражается формулой

, (1)

где m – масса тела, М – масса Земли, R – радиус Земли, h – высота тела над поверхностью Земли. Сила тяжести направлена вертикально вниз, к центру Земли.

Силой тяжести называется сила, действующая на любое находящееся вблизи земной поверхности тело.

Она определяется как геометрическая сумма действующей на тело силы гравитационного притяжения к Земле и центробежной силы инерции , учитывающей эффект суточного вращения Земли вокруг собственной оси, т.е. . Направление силы тяжести является направлением вертикали в данном пункте земной поверхности.

НО величина центробежной силы инерции очень мала по сравнению с силой притяжения Земли (их отношение составляет примерно 3∙10 -3), то обычно силой пренебрегают. Тогда .

Вес тела – это сила, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес.

По третьему закону Ньютона обе эти силы упругости равны по модулю и направлены в противоположные стороны. После нескольких колебаний тело на пружине оказывается в покое. Это значит, что сила тяжести по модулю равна силе упругости F упр пружины. Но этой же силе равен и вес тела.

Таким образом, в нашем примере вес тела, который мы обозначим буквой , по модулю равен силе тяжести:

Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел. Если после прекращения действия внешних сил восстанавливаются прежние форма и размеры тела, то деформация называется упругой . Деформация имеет упругий характер в случае, если внешняя сила не превосходит определенного значения, называемого пределом упругости .

Упругие силы возникают во всей деформированной пружине. Любая часть пружины действует на другую часть с силой упругости F упр.

Удлинение пружины пропорционально внешней силе и определяется законом Гука:

k – жесткость пружины. Видно, что чем больше k , тем меньшее удлинение получит пружина под действием данной силы.

Так как упругая сила отличается от внешней только знаком, т.е. F упр = –F вн, закон Гука можно записать в виде

,
F упр = –kx .

Сила трения

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел.

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя .

Сила трения покоя не может превышать некоторого максимального значения (F тр) max . Если внешняя сила больше (F тр) max , возникает относительное проскальзывание . Силу трения в этом случае называют силой трения скольжения . Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя.

F тр = (F тр) max = μN.

Коэффициент пропорциональности μ называют коэффициентом трения скольжения .

Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей.

При движении твердого тела в жидкости или газе возникает сила вязкого трения . Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.

Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях F тр ~ υ, при больших скоростях F тр ~ υ 2 . При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.

Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.

Внешние и внутренние силы

Внешняя сила - это мера взаимодействия между телами. В задачах сопротивления материалов внешние силы считаются всегда заданными. К внешним силам относятся также реакции опор.

Внешние силы делятся на объемные и поверхностные . Объемные силы при­ложены к каждой частице тела по всему его объему. Примером объемных сил являются силы веса и силы инерции. Поверхностные силы делятся на сосредоточенные и распределенные .
Сосре­доточенными считаются силы, приложенные к малой поверхности, размеры которой малы по сравнению с размерами тела. Однако при расчете напряжений вблизи зоны приложения силы нагрузку следует считать распределенной. К сосредоточенным нагрузкам относят не только сосредоточенные силы, но и пары сил, примером которых можно счи­тать нагрузку, создаваемую гаечным ключом при закручивании гайки. Сосредоточенные усилия измеряются в кН .
Распределенные нагрузки бывают распределенными по длине и по площади. Распределенные силы измеряются, как правило, в кН/м 2 .

В результате действия внешних сил в теле возникают внутренние силы .
Внутренняя сила - мера взаимодействия между частицами одного тела.

Замкнутая система - термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется (как результат обобщения опыта), что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может (нулевое начало термодинамики ).

ВОПРОС

Законы сохранения - фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

Некоторые из законов сохранения выполняются всегда и при всех условиях (например, законы сохранения энергии, импульса, момента импульса, электрического заряда), или, во всяком случае, никогда не наблюдались процессы, противоречащие этим законам. Другие законы являются лишь приближёнными и выполняющимися при определённых условиях.

Законы сохранения

В классической механике законы сохранения энергии, импульса и момента импульса выводятся из однородности/изотропности лагранжиана системы - лагранжиан (функция Лагранжа) не меняется со временем сам по себе и не изменяется переносом или поворотом системы в пространстве. По сути это означает то, что при рассмотрении некой замкнутой в лаборатории системы будут получены одни и те же результаты - вне зависимости от расположения лаборатории и времени проведения эксперимента. Другие симметрии лагранжиана системы, если они есть, соответствуют другим сохраняющимся в данной системе величинам (интегралам движения); например, симметрия лагранжиана гравитационной и кулоновской задачи двух тел приводит к сохранению не только энергии, импульса и момента импульса, но и вектора Лапласа - Рунге - Ленца.

Вопрос

Закон сохранения импульса является следствием второго и третьего законов Ньютона. Он имеет место в изолированной (замкнутой) системе тел.

Такой системой называется механическая система, на каждое из тел которой не действуют внешние силы. В изолированной системе проявляются внутренние силы, т.е. силы взаимодействия между телами, входящими в систему.

Центр масс - это геометрическая точка, характеризующая движение тела или системы частиц как целого.

Определение

Положение центра масс (центра инерции) в классической механике определяется следующим образом:

где - радиус-вектор центра масс, - радиус-вектор i -й точки системы,

Масса i -й точки.

.

Это уравнение движения центра масс системы материальных точек с массой, равной массе всей системы, к которой приложена сумма всех внешних сил (главный вектор внешних сил) или теорема о движении центра масс.

Реактивное движение.

Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным .
Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противоположную сторону. Действительно, так как m 1 v 1 +m 2 v 2 =0, то m 1 v 1 =-m 2 v 2 , т. е. v 2 =-v 1 m 1 /m 2 .

Из этой формулы следует, что скорость v 2 , получаемая системой с массой m 2 , зависит от выброшенной массы m 1 и скорости v 1 ее выбрасывания.

Тепловой двигатель, в котором сила тяги, возникающая за счет реакции струи вылетающих раскаленных газов, приложена непосредственно к его корпусу, называют реактивным . В отличие от других транспортных средств устройство с реактивным двигателем может двигаться в космическом пространстве.

Движение тел с переменной массой.

Уравнение Мещерского.

,
где v отн - скорость истечения топлива относительно ракеты;
v - скорость движения ракеты;
m - масса ракеты в данный момент времени.

Формула Циолковского.

,
m 0 - масса ракеты в момент старта

Вопрос

Работа переменной силы

Пусть тело движется прямолинейно с равномерной силой под углом £ к направлению перемещения и проходит расстояние S/ Работой силы F называется скалярная физическая величина, равная скалярному произведению вектора силы на вектора перемещения. A=F·s·cos £. А=0, если F=0, S=0, £=90º. Если сила непостоянная (изменяется), то для нахождения работы следует разбивать траекторию на отдельные участки. Разбиение можно производить до тех пор, пока движение не станет прямолинейным, а сила постоянной │dr│=ds.. Работа, совершенная силой на данном участке определяется по представленной формуле dA=F· dS· cos £= = │F│·│dr│· cos £=(F;dr)=F t ·dS A=F·S· cos £=F t ·S . Таким образом, работа переменной силы на участке траектории равна сумме элементарных работ на отдельных малых участках пути A=SdA=SF t ·dS= =S(F·dr).

Работа переменной силы в общем случае вычисляется посредством интегрирования:

Мощностью (мгновенной мощностью) называется скалярная величина N , равная отношению элементарной работы к малому промежутку времени dt , в течение которого эта работа совершается.

Средней мощностью называется величина, равная отношению работы А, совершаемой за промежуток времени Dt , к продолжительности этого промежутка

Консервативная система - физическая система, работа неконсервативных сил которой равна нулю и для которой имеет место закон сохранения механической энергии, то есть сумма кинетической энергии и потенциальной энергии системы постоянна.

Примером консервативной системы служит солнечная система. В земных условиях, где неизбежно наличие сил сопротивления (трения, сопротивления среды и др.), вызывающих убывание механической энергии и переход её в другие формы энергии, например в тепло, консервативная система осуществляются лишь грубо приближённо. Например, приближённо можно считать консервативной системой колеблющийся маятник, если пренебречь трением в оси подвеса и сопротивлением воздуха.

Диссипативная система - это открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой .

Диссипативная система характеризуется спонтанным появлением сложной, зачастую хаотичной структуры. Отличительная особенность таких систем - несохранение объёма в фазовом пространстве, то есть не выполнение Теоремы Лиувилля.

Простым примером такой системы являются ячейки Бенара. В качестве более сложных примеров называются лазеры, реакция Белоусова - Жаботинского и сама биологическая жизнь.

Термин «диссипативная структура» введен Ильёй Пригожиным.

Закон сохранения энергии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии называется первым началом термодинамики.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом , а принципом сохранения энергии .

Закон сохранения энергии является универсальным. Для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря, различающихся для разных систем.

Согласно теореме Нётер, закон сохранения энергии является следствием однородности времени.

W=W k +W п =const

Вопрос

Кинетической энергией тела называется энергия его механического движения.

В классической механике

Кинетическая энергия механической системы

Изменение кинетической энергии механической системы равно алгебраической сумме работ всех внутренних и внешних сил, действующих на эту систему

Или

Если система не деформируется, то

Кинетическая энергия механической системы равна сумме кинетической энергии поступательного движения ее центра масс и кинетической энергии той же системы в ее движении относительно поступательно движущейся системы отсчета с началом в центре масс W к " (теорема Кёнига)

Потенциальная энергия. Рассмотрение примеров взаимодействия тел силами тяготения и силами упругости позволяет обнаружить следующие признаки потенциальной энергии:

Потенциальной энергией не может обладать одно тело, не взаимодействующее с другими телами. Потенциальная энергия - это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела - это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела - это энергия взаимодействия отдельных частей тела между собой силами упругости.

Механическая энергия частицы в силовом поле

Сумму кинетической и потенциальной энергии - называют полной механической энергией частицы в поле:

(5.30)

Заметим, что полная механическая энергия Е, как и потенциальная, определяется с точностью до прибавления несущественной произвольной постоянной.

Вопрос

Вывод основного закона динамики вращательного движения.

Рис. 8.5. К выводу основного уравнения динамики вращательного движения.

Динамика вращательного движения материальной точки. Рассмотрим частицу массы m, вращающуюся вокруг токи О по окружности радиуса R , под действием результирующей силы F (см. рис. 8.5). В инерциальной системе отсчета справедлив 2 ой закон Ньютона. Запишем его применительно к произвольному моменту времени:

F = m·a .

Нормальная составляющая силы не способна вызвать вращения тела, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление уравнение движения примет вид:

Поскольку a t = e·R, то

F t = m·e·R (8.6)

Умножив левую и правую части уравнения скалярно на R, получим:

F t ·R= m·e·R 2 (8.7)
M = I·e. (8.8)

Уравнение (8.8) представляет собой 2 ой закон Ньютона (уравнение динамики) для вращательного движения материальной точки. Ему можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения (см. рис. 8.5):

M = I·e . (8.9)

Основной закон динамики материальной точки при вращательном движении можно сформулировать следующим образом:


1 | | | |

Момент силы

Вращающее действие силы определяется ее моментом. Моментом силы относительно какой-либо точки называется векторное произведение

Радиус-вектор, проведенный из точки в точку приложения силы (рис.2.12). Единица измерения момента силы .

Рисунок 2.12

Величина момента силы

или можно записать

где - плечо силы (кратчайшее расстояние от точки до линии действия силы).

Направление вектора определяется по правилу векторного произведения или по правилу «правого винта» (векторы и параллельным переносом совмещаем в точке О, направление вектора определяется так, чтобы из его конца поворот от вектора к был виден против часовой стрелки – на рис 2.12 вектор направлен перпендикулярно плоскости чертежа «от нас» (аналогично по правилу буравчика – поступательное движение соответствует направлению вектора , вращательное соответствует повороту от к )).

Момент силы относительно какой-либо точки равен нулю, если линия действия силы проходит через эту точку.

Проекция вектора на какую-либо ось, например, ось z, называется моментом силы относительно этой оси. Чтобы определить момент силы относительно оси, сначала проецируют силу на плоскость, перпендикулярную оси (рис. 2.13), а затем находят момент этой проекции относительно точки пересечения оси с перпендикулярной ей плоскостью. Если линия действия силы параллельна оси, или пересекает ее, то момент силы относительно этой оси равен нулю.


Рисунок 2.13

Момент импульса

Моментомимпульса материальной точки массой , движущейся со скоростью , относительно какой-либо точки отсчета , называют векторное произведение

Радиус-вектор материальной точки (рис. 2.14), - ее импульс.

Рисунок 2.14

Величина момента импульса материальной точки

где -кратчайшее расстояние от линии вектора до точки .

Направление момента импульса определяется аналогично направлению момента силы.

Если выражение для L 0 умножить и разделить на l получим:

Где - момент инерции материальной точки - аналог массы во вращательном движении.

Угловая скорость.

Момент инерции твердого тела

Видно, что получающиеся формулы очень похожи на выражения для импульса и для второго закона Ньютона соответственно, только вместо линейной скорости и ускорения используются угловые скорость и ускорение, а вместо массы – величина I=mR 2 , именуемая моментом инерции материальной точки .

Если тело нельзя считать материальной точкой, но можно считать абсолютно твердым, то его момент инерции можно считать суммой моментов инерции бесконечно малых его частей, поскольку угловые скорости вращения этих частей одинаковы (рис. 2.16). Сумма бесконечно малых – интеграл:

Для любого тела существуют оси, проходящие через его центр инерции, обладающие таким свойством: при вращении тела вокруг таких осей в отсутствии внешних воздействий оси вращения не меняют своего положения. Такие оси называются свободными осями тела . Можно доказать, что для тела любой формы и с любым распределением плотности существуют три взаимно перпендикулярные свободные оси, именуемые главными осями инерции тела. Моменты инерции тела относительно главных осей именуются главными (собственными) моментами инерции тела.

Главные моменты инерции некоторых тел приведены в табл.:

Теорема Гюйгенса-Штейнера.

Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями .

Основное уравнение динамики вращательного движения

Основной закон динамики вращательного движения можно получить из второго закона Ньютона для поступательного движения твердого тела

Где F – сила, приложенная к телу массой m ; а – линейное ускорение тела.

Если к твердому телу массой m в точке А (рис. 2.15) приложить силу F , то в результате жесткой связи между всеми материальными точками тела все они получат угловое ускорение ε и соответственные линейные ускорения, как если бы на каждую точку действовала сила F 1 …F n . Для каждой материальной точки можно записать:

Где поэтому

Где m i – масса i- й точки; ε – угловое ускорение; r i – ее расстояние до оси вращения.

Умножая левую и правую части уравнения на r i , получаем

Где – момент силы – это произведение силы на ее плечо.

Рис. 2.15. Твердое тело, вращающееся под действием силы F около оси “ОО”

– момент инерции i -й материальной точки (аналог массы во вращательном движении).

Выражение можно записать так:

Просуммируем левую и правую части по всем точкам тела:

Уравнение – основной закон динамики вращательного движения твердого тела. Величина – геометрическая сумма всех моментов сил, то есть момент силы F , сообщающий всем точкам тела ускорение ε. – алгебраическая сумма моментов инерции всех точек тела. Закон формулируется так: «Момент силы, действующий на вращающееся тело, равен произведению момента инерции тела на угловое ускорение».

С другой стороны

В свою очередь - изменение момента импульса тела.

Тогда основной закон динамики вращательного движения можно переписать в виде:

Или - импульс момента силы , действующий на вращающееся тело, равен изменению его момента импульса .

Закон сохранения момента импульса

Аналогично ЗСИ.

Согласно основному уравнению динамики вращательного движения момент силы относительно оси Z: . Отсюда в замкнутой системе и, следовательно, – суммарный момент импульса относительно оси Z всех тел, входящих в замкнутую систему есть величина неизменная . Это выражает закон сохранения момента импульса . Этот закон действует только в инерциальных системах отсчёта.

Проведем аналогию между характеристиками поступательного движения и вращательного.

Основные понятия.

Момент силы относительно оси вращения – это векторное призведение радиус-вектора на силу.

Момент силы – это вектор, направление которого определяется по правилу буравчика (правого винта) в зависимости от направления силы, действующей на тело. Момент силы направлен вдоль оси вращения и не имеет конкретной точки приложения.

Численное значение данного вектора определяется по формуле:

M=r×F × sina (1.15),

где a- угол между радиус-вектором и направлением действия силы.

Если a=0 или p , момент силы М=0 , т.е. сила, проходящяя через ось вращения или совпадающяя с ней, вращения не вызывает.

Наибольший по модулю вращающий момент создается, если сила действует под углом a=p/2 (М > 0) или a=3p/2 (М < 0).

Используя понятие плеча силы (плечо силы d – это перпендикуляр, опущенный из центра вращения на линию действия силы), формула момента силы принимает вид:

Где (1.16)

Правило моментов сил (условие равновесия тела, имеющего неподвижную ось вращения):

Для того, чтобы тело, имеющее неподвижную ось вращения, находилось в равновесии, необходимо, чтобы алгебраическая сумма моментов сил, действующих на данное тело, равнялась нулю.

S М i =0 (1.17)

Единицей измерения момента силы в системе СИ является [Н×м]

При вращательном движении инертность тела зависит не только от его массы, но и от распределения ее в пространстве относительно оси вращения.

Инертность при вращении характеризуется моментом инерциитела относительно оси вращения J.

Момент инерции материальной точки относительно оси вращения – это величина, равная произведению массы точки на квадрат ее расстояния от оси вращения:

J i =m i × r i 2 (1.18)

Моментом инерции тела относительно оси называется сумма моментов инерции материальных точек, из которых состоит тело:

J=S m i × r i 2 (1.19)

Момент инерции тела зависит от его массы и формы, а также от выбора оси вращения. Для определения момента инерции тела относительно некоторой оси используется теорема Штейнера-Гюйгенса:

J=J 0 +m× d 2 (1.20),

где J 0 момент инерции относительно параллельной оси, проходящей через цент масс тела, d расстояние между двумя параллельными осями. Момент инерции в СИ измеряется в [кг×м 2 ]

Момент инерции при вращательном движении туловища человека определяют опытным путем и рассчитывают приблизительно по формулам для цилиндра, круглого стержня или шара.

Момент инерции человека относительно вертикальной оси вращения, которая проходит через центр масс (центр масс тела человека находится в сагиттальной плоскости немного впереди второго крестцового позвонка), в зависимости от положения человека, имеет следующие значения: при стойке “смирно” – 1,2 кг×м 2 ; при позе «арабеск» – 8 кг×м 2 ; в горизонтальном положении – 17 кг× м 2 .

Работа во вращательном движении совершается при вращении тела под действием внешних сил.

Элементарная работа силы во вращательном движении равна произведению момента силы на элементарный угол поворота тела:

dA i =M i × dj (1.21)

Если на тело действует несколько сил, то элементарная работа равнодействующей всех приложенных сил определяется по формуле:

dA=M× dj (1.22),

где М – суммарный момент всех внешних сил, действующих на тело.

Кинетическая энергия вращающегося тела W к зависит от момента инерции тела и угловой скорости его вращения:

Момент импульса (момент количества движения) – величина, численно равная произведению импульса тела на радиус вращения.

L=p× r=m× V× r (1.24).

После соответствующих преобразований можно записать формулу для определения момента импульса в виде:

(1.25).

Момент импульса – вектор, направление которого определяется по правилу правого винта. Единицей измерения момента импульса в СИ является [кг×м 2 /с]

Основные законы динамики вращательного движения.

Основное уравнение динамики вращательного движения:

Угловое ускорение тела, совершающего вращательное движение, прямо пропорционально суммарному моменту всех внешних сил и обратно пропорционально моменту инерции тела.

(1.26).

Данное уравнение играет ту же роль при описании вращательного движения, что и второй закон Ньютона для поступательного движения. Из уравнения видно, что при действии внешних сил угловое ускорение тем больше, чем меньше момент инерции тела.

Второй закон Ньютона для динамики вращательного движения можно записать в ином виде:

(1.27),

т.е. первая производная от момента импульса тела по времени равна суммарному моменту всех внешних сил, действующих на данное тело.

Закон сохранения момента импульса тела:

Если суммарный момент всех внешних сил, действующих на тело, равен нулю, т.е.

S M i =0 , тогда dL/dt=0 (1.28).

Из этого следует или (1.29).

Это утверждение составляет сущность закона сохранения момента импульса тела, который формулируется следующим образом:

Момент импульса тела остается постоянным, если суммарный момент внешних сил, действующих на вращающееся тело, равен нулю.

Этот закон является справедливым не только для абсолютно твердого тела. Примером является фигурист, который выполняет вращение вокруг вертикальной оси. Прижимая руки, фигурист уменьшает момент инерции и увеличивает угловую скорость. Чтобы затормозить вращения, он, наоборот, широко разводит руки; в результате момент инерции увеличивается, и угловая скорость вращения уменьшается.

В заключение приведем сравнительную таблицу основных величин и законов, характеризующих динамику поступательного и вращательного движений.

Таблица 1.4.

Поступательное движение Вращательное движение
Физическая величина Формула Физическая величина Формула
Масса m Момент инерции J=m×r 2
Сила F Момент силы M=F×r, если
Импульс тела (количество движения) p=m×V Момент импульса тела L=m×V×r; L=J×w
Кинетическая энергия Кинетическая энергия
Механическая работа dA=FdS Механическая работа dA=Mdj
Основное уравнение динамики поступательного движения Основное уравнение динамики вращательного движения ,
Закон сохранения импульса тела или если Закон сохранения момента импульса тела или SJ i w i =const, если

Центрифугирование.

Разделение неоднородных систем, состоящих из частиц различной плотности, может быть произведено под действием силы тяжести и силы Архимеда (выталкивающей силы). Если есть водная суспензия частиц различной плотности, то на них действует результирующая сила

F р =F т – F А =r 1 ×V×g - r×V×g , т.е

F р =(r 1 - r)× V×g (1.30)

где V – объем частицы, r 1 и r – соответственно плотности вещества частицы и воды. Если плотности незначительно отличаются друг от друга, то результирующая сила мала и расслоение (осаждение) происходит достаточно медленно. Поэтому используют принудительное разделение частиц за счет вращения разделяемой среды.

Центрифугированием называется процесс разделения (сепарации) неоднородных систем, смесей или взвесей, состоящих из частиц различной массы, происходящий под действием центробежной силы инерции.

Основу центрифуги составляет ротор с гнездами для пробирок, расположенный в закрытом корпусе, который приводится во вращение электродвигателем. При вращении с достаточно высокой скоростью ротора центрифуги частицы взвеси, различные по масссе, под действием центробежной силы инерции распределяются слоями на различной глубине, а наиболее тяжелые осаждаются на дне пробирки.

Можно показать, что сила, под действием которой происходит сепарация, определяется по формуле:

(1.31)

где w - угловая скорость вращения центрифуги, r – расстояние от оси вращения. Эффект центрифугирования тем больше, чем больше различие плотностей сепарируемых частиц и жидкости, а также существенно зависит от угловой скорости вращения.

Ультрацентрифуги, работающие при скорости вращения ротора порядка 10 5 –10 6 оборотов в минуту, способны разделить частицы размером менее 100нм, взвешенные или растворенные в жидкости. Они нашли широкое применение в медико-биологических исследованиях.

С помощью ультрацентрифугирования можно разделить клетки на органеллы и макромолекулы. Вначале оседают (седиментируют) более крупные части (ядра, цитоскелет). При дальнейшем увеличении скорости центрифугирования последовательно оседают более мелкие частицы – сначала митохондрии, лизосомы, затем микросомы и, наконец, рибосомы и крупные макромолекулы. При центрифугировании различные фракции оседают с различной скоростью, образуя в пробирке отдельные полосы, которые можно выделить и исследовать. Фракционированные клеточные экстракты (бесклеточные системы) широко используют для изучения внутриклеточных процессов, например для изучения биосинтеза белка, расшифровки генетического кода.

Для стерилизации наконечников в стоматологии используется масляный стерилизатор с центрифугой, с помощью которой удаляется излишнее масло.

Центрифугирование можно использовать для осаждения частиц, взвешенных в моче; отделения форменных элементов от плазмы крови; разделения биополимеров, вирусов и субклеточных структур; контроля за чистотой препарата.

Задания для самоконтроля знаний.

Задание1 . Вопросы для самоконтроля.

Чем отличается равномерное движение по окружности от равномерного прямолинейного движения? При каком условии тело будет двигаться равномерно по окружности?

Объясните причину того, что равномерное движение по окружности происходит с ускорением.

Может ли криволинейное движение происходить без ускорения?

При каком условии момент силы равен нулю? принимает наибольшее значение?

Укажите границы применимости закона сохранения импульса, момента импульса.

Укажите особенности сепарации под действием силы тяжести.

Почему разделение белков с различными молекулярными массами можно проводить при помощи центрифугирования, а метод фракционной перегонки оказывается неприемлемым?

Задание 2 . Тесты для самоконтроля.

Вставьте пропущенное слово:

Изменение знака угловой скорости свидетельствует об изменении_ _ _ _ _ вращательного движения.

Изменение знака углового ускорения свидетельствует об изменении_ _ _ вращательного движения

Угловая скорость равна _ _ _ _ _производной угла поворота радиус-вектора по времени.

Угловое ускорение равно _ _ _ _ _ _производной угла поворота радиус-вектора по времени.

Момент силы равен_ _ _ _ _, если направление действующей на тело силы совпадает с осью вращения.

Найдите правильный ответ:

Момент силы зависит только от точки приложения силы.

Момент инерции тела зависит только от массы тела.

Равномерное движение по окружности происходит без ускорения.

А. Правильно. В. Неправильно.

Скалярними являются все перечисленные величины, за исключением

А. момента силы;

В. механической работы;

С. потенциальной энергии;

Д. момента инерции.

Векторными величинами являются

А. угловая скорость;

В. угловое ускорение;

С. момент силы;

Д. момент импульса.

Ответы : 1 – направления; 2 – характера; 3 – первой; 4 – второй; 5 – нулю; 6 – В; 7 – В; 8 – В; 9 – А; 10 – А, В, С, Д.

Задание 3 . Получите связь между единицами измерения:

линейной скорости см/мин и м/с;

углового ускорения рад/мин 2 и рад/с 2 ;

момента силы кН×см и Н×м;

импульса тела г×см/с и кг×м/с;

момента инерции г×см 2 и кг×м 2 .

Задание 4 . Задачи медико-биологического содержания.

Задача №1. Почему в полетной фазе прыжка спортсмен не может никакими движениями изменить траекторию движения центра тяжести тела? Совершают ли мышцы спортсмена работу при изменении положения частей тела в пространстве?

Ответ: Движениями в свободном полете по параболе спортсмен может только изменять расположение тела и его отдельных частей относительно своего центра тяжести, который в данном случае является центром вращения. Спортсмен совершает работу по изменению кинетической энергии вращения тела.

Задача №2. Какую среднюю мощность развивает человек при ходьбе, если продолжительность шага 0,5с? Считать, что работа затрачивается на ускорение и замедление нижних конечностей. Угловое перемещение ног около Dj=30 о. Момент инерции нижней конечности равен 1,7кг× м 2 . Движение ног рассматривать как равнопеременное вращательное.

Решение:

1)Запишем краткое условие задачи: Dt= 0,5с; Dj =30 0 =p/ 6; I =1,7кг× м 2

2) Определим работу за один шаг (правая и левая нога): A= 2×Iw 2 / 2=Iw 2 .

Используя формулу средней угловой скорости w ср =Dj/Dt, получим: w= 2w ср = 2×Dj/Dt; N=A/Dt= 4×I×(Dj) 2 /(Dt) 3

3) Подставим числовые значения: N =4× 1,7× (3,14) 2 /(0,5 3 × 36)=14,9(Вт)

Ответ: 14,9 Вт.

Задача №3. Какова роль движения рук при ходьбе?

Ответ : Движение ног, перемещающихся в двух параллельных плоскостях, находящихся на некотором расстоянии друг от друга, создает момент сил, стремящийся повернуть корпус человека вокруг вертикальной оси. Руками человек размахивает «навстречу» движению ног, создавая тем самым момент сил противоположного знака.

Задача №4. Одним из направлений усовершенствования бормашин, применяемых в стоматологии, является увеличение скорости вращения бора. Скорость вращения борного наконечника в ножных бормашинах составляет 1500 оборотов в минуту, в стационарных электробормашинах – 4000 об/мин, в турбинных бормашинах – уже достигает 300000 об/мин. Зачем разрабатываются новые модификации бормашин с большим числом оборотов в единицу времени?

Ответ: Дентин в несколько тысяч раз более восприимчив к болевым ощущениям, чем кожа: на 1мм 2 кожи приходится 1-2 болевые точки, а на 1мм 2 дентина резцов – до 30000 болевых точек. Увеличение числа оборотов по данным физиологов уменьшает боль при обработке кариозной полости.

Задание 5 . Заполните таблицы:

Таблица №1 . Проведите аналогию между линейными и угловыми характеристиками вращательного движения и укажите связь между ними.

Таблица №2.

Задание 6. Заполните ориентировочную карту действия:

Основные задания Указания Ответы
Для чего в начальной стадии исполнения сальто гимнаст сгинает колени и прижимает их к груди, а в конце вращения выпрямляет тело? Используйте для анализа процесса понятие момента импульса и закон сохранения момента импульса.
Объясните, почему стоять на цыпочках (или держать тяжелый груз) так тяжело? Рассмотрите условия равновесия сил и их моментов.
Как изменится угловое ускорение при увеличении момента инерции тела? Проанализируйте основное уравнение динамики вращательного движения.
Как зависит эффект центрифугирования от разности в плотностях жидкости и частиц, которые сепарируются? Рассмотрите силы, действующие при центрифугировании и соотношения между ними

Глава 2. Основы биомеханики.

Вопросы.

Рычаги и сочленения в опорно-двигательном аппарате человека. Понятие о степенях свободы.

Виды сокращения мышц. Основные физические величины, описывающие мышечные сокращения.

Принципы двигательной регуляции у человека.

Методы и приборы для измерения биомеханических характеристик.

2.1. Рычаги и сочленения в опорно-двигательном аппарате человека.

Анатомия и физиология двигательного аппарата человека обладают следующими особенностями, которые необходимо учитывать при биомеханических расчетах: движения тела определяются не только мышечными силами, но и внешними силами реакции, силой тяжести, инерционными силами, а также упругими силами и трением; структура двигательного аппарата допускает исключительно вращательные движения. С помощью анализа кинематических цепей поступательные движения могут быть сведены к вращательным движениям в суставах; движения управляются с помощью очень сложного кибернетического механизма, так что происходит постоянное изменение ускорений.

Опорно-двигательный аппарат человека состоит из сочлененных между собой костей скелета, к которым в определенных точках прикрепляются мышцы. Кости скелета действуют как рычаги, которые имеют точку опоры в сочленениях и приводятся в движение силой тяги, возникающей при сокращении мышц. Различают три вида рычага :

1) Рычаг, к которому действующая сила F и сила сопротивления R приложены по разные стороны от точки опоры. Примером такого рычага является череп, рассматриваемый в сагиттальной плоскости.

2) Рычаг, у которого действующая сила F и сила сопротивления R приложены по одну сторону от точки опоры, причем, сила F приложена к концу рычага, а сила R - ближе к точке опоры. Данный рычаг дает выигрыш в силе и проигрыш в расстоянии, т.е. является рычагом силы . Пример - действие свода стопы при подъеме на полупальцы, рычаги челюстно-лицевого отдела (рис. 2.1). Движения жевательного аппарата очень сложны. При закрывании рта поднимание нижней челюсти из положения максимального опускания до положения полного смыкания ее зубов с зубами верхней челюсти осуществляется движением мышц, поднимающих нижнюю челюсть. Эти мышцы действуют на нижнюю челюсть как на рычаг второго рода с точкой опоры в суставе (дающий выигрыш при жевании в силе).

3) Рычаг, у которого действующая сила приложена ближе к точке опоры, чем сила сопротивления. Данный рычаг является рычагом скорости , т.к. дает проигрыш в силе, но выигрыш в перемещении. Пример - кости предплечья.

Рис. 2.1. Рычаги челюстно-лицевого отдела и свода стопы.

Большинство костей скелета находится под действием нескольких мышц, развивающих усилия по различным направлениям. Равнодействующая их находится путем геометрического сложения по правилу параллелограмма.

Кости опорно-двигательного аппарата соединяются между собой в сочленениях или суставах. Концы костей, образующих сустав, удерживаются вместе с помощью плотно охватывающей их суставной сумки, а также прикрепленных к костям связок. Для уменьшения трения соприкасающиеся поверхности костей покрыты гладким хрящом и между ними имеется тонкий слой клейкой жидкости.

Первой ступенью биомеханического анализа двигательных процессов является определение их кинематики. На основе такого анализа строятся абстрактные кинематические цепи, подвижность или устойчивость которых может быть проверена исходя из геометрических соображений. Различают замкнутые и разомкнутые кинематические цепи, образуемые суставами и расположенными между ними жесткими звеньями.

Состояние свободной материальной точки в трехмерном пространстве задается тремя независимыми координатами – х, y, z . Независимые переменные, которые характеризуют состояние механической системы, называются степенями свободы . У более сложных систем количество степеней свободы может быть выше. Вообще, количество степеней свободы определяет не только количество независимых переменных (что характеризует состояние механической системы), но и количество независимых перемещений системы.

Число степеней свободы является основной механической характеристикой сустава, т.е. определяет число осей , вокруг которых возможно взаимное вращение сочленненых костей. Обусловлено оно главным образом геометрической формой поверхности костей, соприкасающихся в суставе.

Максимальное число степеней свободы в суставах – 3.

Примерами одноосного (плоского) сочленения в организме человека являются плечелоктевое, надпяточное и фаланговые соединения. Они допускают только возможность сгибания и разгибания с одной степенью свободы. Так, локтевая кость с помощью полукруглой выемки охватывает цилиндрический выступ на плечевой кости, который и служит осью сустава. Движения в суставе – сгибание и разгибание в плоскости, перпендикулярной оси сустава.

Лучезапястный сустав, в котором осуществляется сгибание и разгибание, а также приведение и отведение, можно отнести к суставам с двумя степенями свободы.

К суставам с тремя степенями свободы (пространственное сочленение) относятся тазобедренное и лопаточно-плечевое сочленение. Например, в лопаточно-плечевом сочленении шаровидная головка плечевой кости входит в сферическую впадину выступа лопатки. Движения в суставе – сгибание и разгибание (в сагиттальной плоскости), приведение и отведение (в фронтальной плоскости) и вращение конечности вокруг продольной оси.

Замкнутые плоские кинематические цепи обладают числом степеней свободы f F , которое вычисляется по числу звеньев n следующим образом:

Ситуация для кинематических цепей в пространстве более сложная. Здесь выполняется соотношение

(2.2)

гдеf i - число ограничений степеней свободы i- го звена.

В любом теле можно выбрать такие оси, направление которых при вращении будет сохраняться без любых специальных устройств. Они имеют название свободные оси вращения

  • А)Общественно-политические движения в России во второй половине XIX в. зарождение политических партий в России и их программы
  • Александр Лоуэн ПРЕДАТЕЛЬСТВО ТЕЛА. сгибая их в коленях. Я всегда сталкивался с тем, что шизоиды, выполняя эти движения, напрягают живот и задерживают дыхание

  • Вверх