Типовые динамические звенья систем автоматического управления. Типовые звенья САУ Синтез линейных САУ

Передаточная функция звена в общем случае представляет собой отношение двух полиномов:

Полином произвольного порядка можно разложить на простые множители k 1 p ; (d 1 p + d 2 ); (d 1 p 2 + d 2 p + d 3 ), поэтому передаточную функцию можно представить как произведение простых множителей или простых дробей вида:

;
;
.

Звенья, передаточные функции которых имеют вид простых множителей или простых дробей, называют типовыми или элементарными звеньями. Элементарные множители, представляющие собой полиномы первого и второго порядка, преобразовываются к стандартному виду, принятому в теории автоматического управления:

;
,

    k (k  0) - коэффициент передачи ,

    T (T  0) - постоянная времени (имеет размерность единицы времени),

     - коэффициент демпфирования (затухания) .

Основные типы звеньев делятся на: позиционные, дифференцирующие и интегрирующие.

Позиционными з веньями называются такие звенья, в передаточной функции которых многочлены M (p ) и N (р ) имеют свободные члены.

У дифференцирующих звеньев в передаточной функции отсутствует свободный член числителя, т.е. для однократно дифференцирующих звеньев передаточная функция имеет вид:

, где M 1 (p ) - свободный член.

У интегрирующих звеньев в передаточной функции отсутствует свободный член знаменателя, т.е.:

.

1. Апериодическое звено . Стандартная форма записи уравнения звена:

А

а ) б )

Рисунок 13. Схемы реализации

апериодического звена

периодическими звеньями являютсяRC и RL цепи, входные и выходные величины которых показаны соответственно на рисунке 13, а и 13, б .

В операторной форме напряжение и ток на выходе для схемы (рис. 13, а ) соответственно равны:

и

.

Рисунок 14. Характеристики

апериодического звена первого порядка

Передаточная функция апериодического звена:

В общем случае передаточная функция апериодического звена имеет вид:

где: k = 1, T = RC .

Переходная функция апериодического звена (рис. 14,а ):

.

Весовая функция апериодического звена (рис. 14,б ):

Если характеристики этих функций получены экспериментально, по ним можно определить значения T и k и получить уравнение звена. За длительность переходного процесса принимают время, в течение которого выходная величина достигает 95% ее конечного значения.

Амплитудно-фазовая частотная характеристика (АФЧХ) апериодического звена (рис. 14,в ):

где:
,
.

Эта характеристика представляет собой полуокружность с радиусом k /2 и центром с координатами (k /2; j = 0) на действительной оси.

Амплитудно-частотная (АЧХ) апериодического звена:

Фазовая частотная характеристики (ФЧХ) апериодического звена:

Логарифмическая амплитудная частотная характеристика (ЛАЧХ) апериодического звена (рис. 14,г ):

Приближенно ЛАЧХ можно заменить двумя асимптотами, к которым она стремится при 0 и . Приближенная ЛАЧХ называется асимптотической .


Обе асимптоты пересекаются в точке, соответствующей = 1/T . Эта частота называется сопрягающей .

На фазовой частотной характеристике (ФЧХ) при  значение φ изменяется от 0 до минус π/2.

2. Колебательное звено . Уравнение колебательного звена имеет вид:
.

Рисунок 15. Схема реализации

колебательного звена

Оно представляет собой последовательное соединение RLC элементов (рис. 15 ).

В операторной форме напряжение на выходе колебательного звена:

, где:
,
.

Принято обозначать Т 0 = Т , Т 1 = 2ξТ , тогда передаточная функция колебательного звена имеет вид:

Коэффициент ξ (дзета) называется коэффициентом демпфирования (затухания). Если 0 < ξ < 1, звено называется колебательным; если ξ = 0 (Т 1 = 0), звено называется консервативным , если ξ ≥ 1 - апериодическим звеном второго порядка.

А

Рисунок 16. Характеристики

колебательного звена

периодическое звено второго порядка можно представить как последовательное соединение двух апериодических звеньев первого порядка. Оно не относится к числу элементарных звеньев.

В общем случае амплитудно-фазовая частотная характеристика звена (рис. 16,а ):

где k = 1.

Умножив числитель и знаменатель на комплексно сопряженное знаменателю выражение, получим:

Отсюда вещественная и мнимая частотные характеристики колебательного звена:

и

Амплитудно-частотная характеристика колебательного звена (АЧХ):

Логарифмическая амплитудно-частотная характеристика (ЛАЧХ) колебательного звена:

При малых значениях частоты ω<1/Т = ω с в выражении
можно пренебречь величинойТ 2 ω 2 , а при значениях частоты ω>1/Т в выражении
можно пренебречь единицей и слагаемым (2ξТω ) 2 . Тогда уравнение асимптотической ЛАЧХ колебательного звена можно записать:

Асимптотическая ЛАЧХ (рис. 16,б ) при ω<1/Т = ω с (ω с - сопрягаемая частота) параллельна оси частот, а при ω ≥ 1/Т имеет наклон минус 40 дБ/декаду. При значениях 0,5<ξ<1 характеристика близка к ломанной линии, если ξ<0,5, то получается заметный «горб», который уходит в бесконечность при ξ → 0. Роль постоянных времени Т 0 и Т 1 в уравнении колебательного звена следующая: постоянная Т 0 - «раскачивает» колебания, а Т 1 - демпфирует их.

Фазовая частотная характеристика (ФЧХ) (рис. 16,б ) изменяется монотонно в интервале от 0 до - :

Переходная функция колебательного звена (рис. 16,в ) при нулевых начальных условиях:

,

где:
;
;
.

При
переходная характеристика представляет собой график гармонических колебаний.

Весовая функция колебательного звена :

ЛЕКЦИЯ 3.

Частотные характеристики.

Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена, вызванные гармоническим воздействием на входе. Рассмотрим такой режим.

Пусть на вход звена (рис.2.6,а) подано гармоническое воздействие

где x max – амплитуда, а ω – угловая частота этого воздействия.

По окончании переходного процесса на выходе звена будут существовать гармонические колебания с той же частотой, что и входные колебания, но отличающиеся в общем случае по амплитуде и фазе. Т.е. в установившемся режиме выходная величина звена

,

где y max – амплитуда выходных установившихся колебаний.

При фиксированной амплитуде входных колебаний амплитуда и фаза установившихся колебаний на выходе звена зависят от частоты колебаний. Если постепенно увеличивать от нуля частоту колебаний и определять установившиеся значения амплитуды и фазы выходных колебаний для разных частот, можно получить зависимость от частоты отношения амплитуд A = y max / x max и сдвига фаз φ выходных и входных установившихся колебаний.

Эти зависимости называются соответственно А(ω) амплитудной частотной характеристикой (АЧХ) и φ(ω) – фазовой частотной характеристикой (ФЧХ). Примерный вид этих характеристик у обычных инерционных звеньев изображен на рис.3.1,а и б. Как показано на этих рисунках, у таких звеньев в силу их инерционности амплитудная частотная характеристика по мере увеличения частоты в конце концов спадает до нуля. При этом, чем менее инерционно звено, тем длиннее его амплитудная частотная характеристика, т.е. тем больше полоса пропускаемых звеном частот, или, просто, его полоса пропускания.

Теоретически частотная характеристика продолжается до бесконечности, но практически полоса пропускания оценивается значением частоты, при котором отношение амплитуд А = 0,707, и при дальнейшем повышении частоты не изменяется (считается, что в диапазоне от –ω П до +ω П элемент системы управления пропускает гармонический сигнал без заметного ослабления). Полоса пропускания Δω П = 2ω П. Наличие максимума у АЧХ говорит о резонансных свойствах звена. Частота, соответствующая максимуму амплитудной характеристики, называется резонансной (ω р). Частота, на которой коэффициент усиления входного сигнала равен единице, называется частотой среза ω с.

Фазовая частотная характеристика показывает фазовые сдвиги, вносимые элементом системы управления на различных частотах. У обычных инерционных звеньев, как показано на рис.3.1,б, при положительных ω ФЧХ всегда отрицательна (φ < 0), т.е. выходные колебания отстают по фазе от входных, и это отставание растет с частотой.

Обыкновенные амплитудная и фазовая частотные характеристики можно объединить в одну характеристику – амплитудно – фазовую частотную характеристику (АФЧХ), используя А(ω) и φ(ω) в качестве полярных координат (рис.3.2). Строится она на комплексной плоскости. Каждая точка АФЧХ соответствует определенному значению частоты ω. Совокупность всех точек при изменении частоты от нуля до бесконечности представляет собой непрерывную линию (которая называется годографом), соответствующую частотной передаточной функции W (j ω). Значения ω для конечного количества точек характеристики наносятся вдоль характеристики, как показано на рис.3.2. Имея АФЧХ, можно по этим точкам построить характеристики А(ω) и φ(ω) .

АФЧХ строится как для положительных, так и для отрицательных частот. При замене в W (j ω) ω на – ω получается сопряженная комплексная величина. Поэтому АФЧХ для отрицательных частот является зеркальным отражением АФЧХ для положительных частот относительно вещественной оси. На рис. 3.2 АФЧХ для отрицательных частот показана пунктирной линией.

АФЧХ можно строить и в прямоугольной системе координат – в комплексной плоскости. При этом координатами будут показанные на рис.3.2 проекции U и V вектора А на соответствующие оси. Зависимости U(ω) и V(ω) называются соответственно действительной (вещественной) и мнимой частотными характеристиками.

В дальнейшем для краткости будем в названии различных частотных характеристик опускать слово «частотная», говоря просто об амплитудной характеристике, фазовой характеристике.

При исследовании САУ амплитудную и фазовую частотные характеристики удобно строить в логарифмических координатах .

Это связано с двумя обстоятельствами. Во-первых , в логарифмических координатах характеристики деформируются таким образом, что возникает возможность в подавляющем большинстве практических случаев упрощенно изображать амплитудные частотные характеристики ломаными линиями.

Второе удобство связано с построением АЧХ цепочки последовательно соединенных звеньев, т.е. в логарифмическом масштабе АЧХ цепочки звеньев равна сумме амплитудных характеристик отдельных звеньев.

АЧХ в логарифмических координатах (Рис. 3.3) строится в виде зависимости 20lg A от lg ω, называется логарифмической амплитудной характеристикой (ЛАХ), а фазовая – в виде зависимости φ от lg ω, называется логарифмической фазовой характеристикой (ЛФХ) .

Величина 20 lg A обозначается L . В качестве единицы этой величины используется децибел , равный одной десятой бела. Бел – это единица десятичного логарифма коэффициента усиления мощности сигнала, т.е. 1 бел соответствует усилению мощности в 10 раз, 2 бела – в 100 раз, 3 бела – в 1000 раз и т.д. Т.к. мощность сигнала пропорциональна квадрату амплитуды, а lg A 2 = 2 lg A , то усиление в белах, выраженное через отношение амплитуд А , равно 2 lg A . Соответственно в децибелах оно равно 20 lg A . При этом существуют следующие соотношения между значениями A и L :

А 0.001 0.01 0.1 0.316 0.89 1.12 3.16
L ,дБ -60 -40 -20 -10 -1

При применении ЛАХ логарифмическая фазовая характеристика строится в полулогарифмических координатах, т.е. в виде зависимости φ от lg ω, чтобы обе характеристики были связаны одним масштабом на оси абсцисс. Использование логарифмического масштаба на оси ординат фазовой характеристики не имеет смысла, т.к. фазовый сдвиг цепочки звеньев и так получается просто в виде суммы фазовых сдвигов на отдельных ее звеньях.

На оси абсцисс указываются либо прямо значения lg ω, либо, что практически более удобно, значения самой частоты ω. В первом случае единицей приращения lg ω является декада, соответствующая изменению частоты в 10 раз. Применяется также деление оси абсцисс на октавы. Октава соответствует изменению частоты в два раза. (Одна октава равна 0.303 декады, т.к. lg 2 = 0.303).

Заметим также, что, т.к. при использовании логарифмического масштаба точка, соответствующая ω=0, находится слева в бесконечности, логарифмические характеристики строятся не от нулевой частоты, а от достаточно малого, но конечного значения ω, которое и откладывается в точке пересечения координатных осей. Точка пересечения ЛАХ с осью абсцисс соответствует частоте среза ω с. Верхняя полуплоскость ЛАХ соответствует значениям А>1 (усиление амплитуды), а нижняя полуплоскость – значениям А<1 (ослабление амплитуды).

Аналитические выражения для рассмотренных выше частотных характеристик могут быть легко получены по передаточной функции. Если в выражение передаточной функции звена W(s) подставить s = jω , то получится комплексная величина W (), которая представляет собой функцию ω и является амплитудно-фазовой частотной (или просто частотной) характеристикой звена. Ее модуль представляет собой амплитудную частотную характеристику А(ω) , а аргумент – фазовую частотную характеристику φ(ω) .

(3.1)

Формула (3.1) определяет искомую связь передаточной функции с частотными характеристиками звена, указанную выше: модуль частотной функции W(jω) есть А(ω) , а аргумент - φ(ω) .

Если представить W(jω) не в показательной, а в алгебраической форме, т.е.

то здесь U(ω) и V(ω) будут введенными ранее действительной и мнимой частотными характеристиками, являющимися координатами амплитудно-фазовой характеристики в комплексной плоскости.

Согласно (3.1) и (3.2), связь между приведенными выше частотными характеристиками следующая:

Порядок получения выражения для перечисленных выше частотных характеристик по передаточной функции звена несложен. После подстановки в выражение для передаточной функции получаем:

,

где индексами R и Q отмечены части соответствующих комплексных величин в числителе и знаменателе.

После освобождения от мнимости в знаменателе окончательно имеем:

Типовые динамические звенья систем автоматического управления

Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х(t) , и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у(t) . Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

§ пропорциональное звено;

§ апериодическое звено I-ого порядка;

§ апериодическое звено II-ого порядка;

§ колебательное звено;

§ интегрирующее звено;

§ идеальное дифференцирующее звено;

§ форсирующее звено I-ого порядка;

§ форсирующее звено II-ого порядка;

§ звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным .

Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W(s) = K где К – коэффициент усиления.


Похожая информация.


В следящих системах (рис. 1.14, а) при повороте ведущего вала на некоторый угол приемный вал также поворачивается на этот же угол. Однако приемный вал занимает новое положение не мгновенно, а с некоторым запозданием после окончания переходного процесса. Переходный процесс может быть апериодическим (рис. 2.1, а) и колебательным с затухающими колебаниями (рис. 2.1, б). Возможно, что колебания приемного вала будут незатухающими (рис. 2.1, в) или возрастающими по амплитуде (рис. 2.1, г). Последние два режима являются неустойчивыми.

Каким образом данная система будет отрабатывать то или иное изменение задающего или возмущающего воздействия, т. е. каков характер переходного процесса системы, будет ли система устойчивой или неустойчивой - эти и подобные вопросы рассматриваются в динамике систем, автоматического управления.

2.1. Динамические звенья автоматических систем

Необходимость представления элементов автоматических систем динамическими звеньями. Определение динамического звена

Для определения динамических свойств автоматической системы необходимо иметь ее математическое описание, т. е. математическую модель системы. Для этого следует составить дифференциальные уравнения элементов системы, с помощью которых описываются происходящие в них динамические процессы.

При анализе элементов автоматических систем выясняется, что разнообразные элементы, отличающиеся назначением, конструкцией, принципом действия и физическими процессами, описываются одинаковыми дифференциальными уравнениями, т. е. являются сходными по динамическим свойствам. Например, в электрической цепи и механической системе, несмотря на различную их физическую природу, динамические процессы могут описываться аналогичными дифференциальными уравнениями.

Рис. 2.1. Возможные реакции следящей системы на ступенчатое задающее воздействие.

В теории автоматического управления элементы автоматических систем с точки зрения их динамических свойств представляют с, помощью небольшого числа элементарных динамических звеньев. Под элементарным динамическим звеном понимается математическая модель искусственно выделяемой части системы, характеризуемая нексь торым простейшим алгоритмом (математическим или графическим описанием процесса).

Одним элементарным звеном иногда могут быть представлены несколько элементов системы или наоборот - один элемент может быть представлен в виде нескольких звеньев.

По направлению прохождения воздействия различают вход и выход и соответственно входную и выходную величины звена. Выходная величина звена направленного действия не оказывает влияния на входную величину. Дифференциальные уравнения таких звеньев можно составлять отдельно и независимо от других звеньев. Поскольку в САУ входят различные усилители, обладающие направленным действием, САУ обладает способностью передавать воздействия только в одном направлении. Поэтому уравнение динамики всей системы можно получить из уравнений динамики ее звеньев, исключая промежуточные переменные.

Элементарные динамические звенья являются основой для построения математической модели системы любой сложности.

Классификация и динамические характеристики звеньев

Тип звена определяется алгоритмом, в соответствии с которым происходит преобразование входного воздействия. В зависимости от алгоритма различают следующие типы элементарных динамических звеньев: пропорциональное (усилительное), апериодическое (инерционное), колебательное, интегрирующее и дифференцирующее.

Каждое звено характеризуется следующими динамическими характеристиками: уравнением динамики (движения), передаточной функцией, переходной и импульсной переходной (весовой) функциями, частотными характеристиками. Такими же динамическими характеристиками оцениваются и свойства автоматической системы. Рассмотрим динамические характеристики на примере апериодического звена,

Рис. 2.2. Электрическая -цепь, представляемая апериодическим звеном, и реакции звена на типовые входные воздействия: а - схема; б - единичное ступенчатое воздействие; в - переходная функция звена; - единичный импульс; д - импульсная переходная функция звена.

которым представляется электрическая цепь, изображенная на рис. 2.2, а.

Уравнение динамики звена (системы). Уравнение динамики элемента (звена) - уравнение, определяющее зависимость выходной величины элемента (звена) от входной величины

Уравнение динамики можно записать в дифференциальной и операционной формах. Для получения дифференциального уравнения элемента составляются дифференциальные уравнения для входной и выходной величин этого элемента. Применительно к электрической цепи (рис. 2.2, а):

Дифференциальное уравнение цепи получают из этих уравнений исключением промежуточной переменной

где - постоянная времени, с; - коэффициент усиления звена.

В теории автоматического управления принята следующая форма записи уравнения: выходная величина и ее производные находятся в левой части, причем на первом месте стоит производная высшего порядка; выходная величина входит в уравнение с коэффициентом, равным единице; входная величина, а также в более общем случае ее производные и другие члены (возмущения) стоят в правой части уравнения. Уравнение (2.1) записано в соответствии с этой формой.

Элемент системы, процесс в котором описывается уравнением вида (2.1), представляется апериодическим звеном (инерционным, статическим звеном первого порядка).

Для получения уравнения динамики в операционной (по Лапласу) форме функции, входящие в дифференциальное уравнение, заменяются преобразованными по Лапласу функциями, а операции дифференцирования

и интегрирования в случае нулевых начальных условий - умножением и делением на комплексную переменную изображений функций, от которых берется производная или интеграл. В результате этого осуществляется переход от дифференциального уравнения к алгебраическому. В соответствии с дифференциальным уравнением (2.1) уравнение динамики апериодического звена в операционной форме для случая нулевых начальных условий имеет вид:

где - изображение по Лапласу функции времени - комплексное число.

Не следует путать операционную форму (2.2) записи уравнения с символической формой записи дифференциального уравнения:

где - символ дифференцирования. Отличить символ «дифференцирования от комплексной переменной несложно: после символа дифференцирования стоит оригинал, т. е. функция от а после комплексной переменной - изображение по Лапласу, т.е. функция от

Из формулы (2.1) видно, что апериодическое звено описывается уравнением первого порядка. Другие элементарные звенья описываются уравнениями нулевого, первого и максимум второго порядка.

Передаточная функция звена (системы) представляет собой отношение изображений по Лапласу выходной Хкых и входной величин при нулевых начальных условиях:

Передаточная функция звена (системы) может быть определена из уравнения звена (системы), записанного в операционной форме. Для апериодического звена в соответствии с уравнением (2.2)

Из выражения (2.3) следует

т. е. зная изображение по Лапласу входного воздействия и передаточную функцию звена (системы), можно определить изображение выходной величины этого звена (системы).

Изображение выходной величины апериодического звена в соответствии с выражением (2.4) следующее:

Переходной функцией звена (системы) h(t) называется реакция звена (системы) на воздействие вида единичной ступенчатой функции (рис. 2.2, б) при нулевых начальных условиях. Переходная функция может быть определена решением дифференциального уравнения обычным или операционным методами. Для определения

операционным методом в уравнение (2.5) подставляем изображение единичной ступенчатой функции и находим изображение переходной функции

т. е. изображение переходной функции равно передаточной функции, деленной на Переходная функция находится как обратное преобразование Лапласа от

Для определения апериодического звена в уравнение (2.6) подставляем и находим изображение переходной функции

Разлагаем на алементарные дроби где и с помощью таблиц преобразования Лапласа находим оригинал

График переходной функции апериодического звена изображен на рис. 2.2, в. Из рисунка видно, что переходный процесс звена имеет апериодический характер. Выходная величина звена достигает своего значения не сразу, а постепенно. В частности, значение достигается через .

Импульсная переходная функция (весовая функция) звена (системы) есть реакция звена (системы) на единичный импульс (мгновенный импульс с бесконечно большой амплитудой и единичной площадью, рис. 2.2, г). Единичный импульс получается дифференцированием единичного скачка: или в операционной форме: Поэтому

т. е. изображение импульсной переходной функции равно передаточной функции звена (системы). Отсюда следует, что для характеристики динамических свойств звена (системы) в равной мере могут быть использованы как передаточная функция, так и импульсная переходная функция. Как видно из (2.8), чтобы получить импульсную переходную функцию, надо найти оригинал, соответствующий передаточной функции Импульсная переходная функция апериодического звена

В соответствии с (2.7) или при переходе к оригиналам импульсная переходная функция звена (системы) может быть также получена дифференцированием переходной функции. Импульсная переходная функция апериодического

(кликните для просмотра скана)

Рис. 2.3. Принципиальные схемы элементов, представляемых пропорциональным звеном: а - делитель напряжения; б - потенциометр; в - усилитель на транзисторе; г - редуктор.

Как видим, выражения (2.9) и (2.10) для совпадают. График импульсной переходной функции апериодического звена изображен на рис. 2.2, д.

Из выражения (2.5) и рассмотренных примеров следует, что при заданном входном воздействии выходная величина определяется передаточной функцией. Поэтому технические требования к выходной величине звена (системы) можно выразить через соответствующие требования к передаточной функции этого звена (системы). В теории автоматического управления метод исследования и проектирования систем с помощью передаточной функции является одним из основных методов.

Пропорциональное (усилительное) звено. Уравнение звена имеет вид:

т. е. между выходной и входной величинами звена имеется пропорциональная зависимость. Уравнение (2.11) в операционной форме

Из уравнения (2.12) определяется передаточная функция звена

т. е. передаточная функция пропорционального звена численно равна коэффициенту усиления. Примерами такого звена могут служить делитель напряжения, потенциометрический датчик, электронный усилительный каскад, идеальный редуктор, схемы которых изображены на рис. 2.3, а, б, е, г соответственно. Коэффициент усиления пропорционального звена может быть как безразмерной (делитель напряжения, усилительный каскад, редуктор), так и размерной величиной (потенциометрический датчик).

Оценим динамические свойства пропорционального звена. При подаче на вход звена ступенчатой функции выходная величина (переходная функция) в силу равенства (2.11) также будет ступенчатой (табл. 2.1), т. е. выходная величина копирует изменение входной

величины без запаздывания и искажения. Поэтому пропорциональное звено называют еще безынерционным.

Импульсная переходная функция пропорционального звена

т. e. представляет собой мгновенный бесконечно большой амплитуды импульс, площадь которого

Колебательное звено. Уравнение звена:

или в операционной форме

Тогда передаточная функция колебательного звена имеет вид

Динамические свойства звена зависят от корней его характеристического уравнения

Свободная составляющая решения

Полное решение уравнения (2.14) при ступенчатом входном воздействии (переходная функция звена) имеет вид:

где - угловая частота собственных колебаний; - начальная фаза колебаний; - декремент затухания; - относительный коэффициент затухания.

На первом этапе проектирования САУ решаются задачи синтеза системы на основании данных о назначении системы и конструктивных особенностях объекта управления. При формировании структуры САУ на этом этапе используют функционально необходимые элементы систем, так называемые звенья САУ (датчики величин, преобразователи сигналов, регуляторы, исполнительные устройства и т.д.).

Вторым этапом проектирования САУ является анализ соответствия качественных характеристик проектируемой системы требуемым. Для проведения всех видов анализа САУ, рассмотренных в разделе 3, необходимо иметь ее модель в виде дифференциального уравнения вида (1) или передаточной функции вида (2).

Для получения моделей САУ вводят понятие типового элементарного звена . Под типовым элементарным звеном понимают совокупность элементов САУ, динамические процессы в которых описываются линейным дифференциальным уравнением вида (1) не выше второго порядка (n £ 2). Введение элементарных звеньев дает возможность свести все многообразие технических устройств к небольшому количеству типовых звеньев, что позволяет использовать общие методы анализа для любых САУ. Типы элементарных звеньев САУ приведены в Приложении 1.

Усилительное безынерционное звено

К звеньям этого типа относится любой элемент САУ, у которого в каждый момент времени существует пропорциональная зависимость между выходной величиной y (t ) и входным воздействием x (t ), т.е. это звено не только в статике, но и в динамике описывается алгебраическим уравнением вида:

y (t ) = k × x (t ),

где k – коэффициент статического преобразования (коэффициент усиления) звена.

Строго говоря усилительное звено не является динамическим, поскольку изменение y (t ) происходит мгновенно, сразу вслед за изменением x (t ). Говорят, что дифференциальное уравнение звена имеет нулевой порядок. Передаточная функция звена имеет вид W (p ) = k .

При подаче на вход единичной ступеньки x (t ) = 1(t ) на выходе мгновенно будет получен такой же сигнал, усиленный в k раз (рис. 35).

Рис. 35

Понятно, что ни одно реальное техническое устройство не может мгновенно преобразовывать входное воздействие, однако быстродействие некоторых элементов САУ столь велико (длительность переходного процесса составляет величину менее секунды), что их можно считать звеньями этого типа. Примерами таких элементов является потенциометр, рычаг, электронный усилитель. В первом приближении, без учета явления скручивания и люфта, усилительным безынерционным звеном можно считать редуктор.

В литературе встречаются и другие названия усилительного безынерционного звена: усилитель , идеальное усилительное или пропорциональное звено .

Апериодическое звено первого порядка

Звено этого типа (см. Приложение 1) описывается дифференциальным уравнением первого порядка:

,

где k – коэффициент статического преобразования (коэффициент усиления) звена; Т – некоторая постоянная, имеющая размерность времени (постоянная времени звена).

На рис. 36 показаны переходные характеристики апериодических звеньев первого порядка с k = 10 и разными постоянными времени Т . Видно, что при увеличении Т выходная величина звена y (t k , т.е. постоянная времени Т характеризует инерционность звена, и определяет время переходного процесса t p . В практических расчетах t p для апериодического звена первого порядки принимают приближенно равным 3×Т .

Рис. 36

.

Апериодическими звеньями первого порядка являются такие устройства САУ, как электрические RL - и RC -контуры (используются в качестве корректирующих устройств САУ), электрический генератор постоянного тока (используется в качестве управляющего устройства САУ), датчик температуры – термопара, проточный резервуар с жидкостью или газом (объекты управления в химико-технологических САУ) и многое другое.

Получим модель динамики RC -контура теоретическим способом: запишем уравнения входной и выходной цепей (рис. 37) по закону Кирхгофа:

Рис. 37

U вх (t ) и выходную – U вых (t ) переменные RC i (t

,

i (t ) в уравнение входной цепи:

.

Полученное уравнение соответствует дифференциальному уравнению апериодического звена первого порядка, для которого постоянная времени Т = R ×C , т.е. определяется номиналами резистора и конденсатора, используемых в RC -контуре; k = 1; y (t ) = U вых (t ); x (t ) = U вх (t ).

В литературе встречаются и другие названия апериодического звена первого порядка: инерционное звено первого порядка или релаксационное звено .

4.3. Апериодическое звено второго порядка и колебательное
устойчивое

Апериодическое звено второго порядка и колебательное устойчивое звено имеют общую форму дифференциального уравнения (см. Приложение 1):

,

но апериодическим второго порядка звено с таким уравнением называется при условии , а колебательным – при условии .

Общий вид передаточной функции для обоих звеньев:

.

Заметим, что при условии уравнение
будет иметь положительный дискриминант и, соответственно, действительные корни. Это позволяет разложить знаменатель передаточной функции апериодического звена второго порядка на множители вида:

где
.

Если учесть, что при последовательном соединении звеньев их передаточные функции перемножаются, то получается, что апериодическое звено второго порядка эквивалентно двум апериодическим звеньям первого порядка, включенным последовательно друг за другом, с общим коэффициентом статического преобразования k и постоянными времени Т 3 и Т 4 .

На рис. 38 показаны переходные характеристики двух апериодических звеньев второго порядка с k = 5 и разными постоянными времени Т 1 и Т 2 . Видно, что при увеличении Т 1 и Т 2 выходная величина звена y (t ) медленнее достигает установившегося значения, равного k , т.е. постоянные времени и для этого звена определяют время переходного процесса.

Важно! Обратите внимание: несмотря на визуальное сходство переходных характеристик апериодических звеньев первого и второго порядков они имеют принципиальные отличия. Характеристика 2-го порядка имеет точку перегиба: в нулевой момент времени скорость изменения y (t ) минимальна, затем она возрастает до точки перегиба, а после нее убывает. Начальный участок переходных характеристик звеньев второго порядка (для t от 0 до 0,5 секунд) показан на рис. 38 в выделенном увеличенном фрагменте. Там же для сравнения приведен аналогичный участок характеристик звеньев первого порядка, показанных на рис. 36. Видно, что для них скорость изменения y (t ) максимальна в момент времени t = 0. Далее, за время t р скорость изменения y (t ) убывает до нуля (см. рис. 36).

Интервал времени до точки перегиба переходной характеристики апериодического звена второго порядка рассчитывается по формуле:

.

При условии , т.е. для колебательного устойчивого звена, знаменатель передаточной функции
будет иметь отрицательный дискриминант и, соответственно, комплексно-сопряженные корни. Из теории дифференциальных уравнений известно, что свободное движение такой системы содержит гармонические составляющие (синус, косинус), что дает колебания выходной величины при изменении входного сигнала.

Передаточную функцию колебательного звена принято записывать в виде:

где Т – постоянная времени колебательного звена; x – коэффициент затухания (для колебательного устойчивого звена 0 < x < 1). Чем больше x, тем быстрее затухают колебания переходной характеристики звена. При x = 0 получается колебательное гармоническое звено, которое дает незатухающие колебания на выходе (см. Приложение 1). При x ³ 1 имеем апериодическое звено второго порядка.

На рис. 39 показаны переходные характеристики двух колебательных звеньев с одинаковыми k = 8 и постоянной времени Т = 1, и разными коэффициентами затухания x. Видно, что колебательность переходной характеристик и перерегулирование у звена с x = 0,25 больше, чем у звена с x = 0,5.

На рис. 40 показаны переходные характеристики двух колебательных звеньев с одинаковыми значениями коэффициента статического преобразования k = 8 и коэффициента затухания x = 0,3, и разными значениями постоянной времени Т . Видно, что время переходного процесса у звена с Т = 2 больше, чем у звена с Т = 1.

Рис. 39
Рис. 40

Колебательными или апериодическими звеньями второго порядка (в зависимости от значений технических характеристик, определяющих соотношение постоянных времени Т 1 и Т 2) являются такие устройства САУ, как электрический RLC -контур; двигатель постоянного тока (см. вывод модели динамики в разделе 2.3.1), упругие механические передачи, например для передачи вращательного движения с упругостью, моментом инерции и коэффициентом скоростного трения, дифманометр (датчик для измерения перепада давления) и другие устройства.

Получим модель динамики RLC -контура теоретическим способом: запишем уравнения входной и выходной цепей (рис. 41) по закону Кирхгофа:

Рис. 41

Целью моделирования является получение дифференциального уравнения вида (1), связывающего входную – U вх (t ) и выходную – U вых (t ) переменные RC -контура. Для этого нужно в уравнениях входной и выходной цепей избавиться от промежуточной внутренней переменной контура – тока i (t ). Продифференцируем уравнение выходной цепи:

,

и подставим результат выражения i (t ) в уравнение входной цепи:

Т 1 = R ×C и , т.е. определяются номиналами резистора, конденсатора и катушки индуктивности, используемых в RLC -контуре; k = 1; y (t ) = U вых (t ); x (t ) = U вх (t ). Конкретный тип звена – апериодическое второго порядка или колебательное – зависит от соотношения постоянных времени Т 1 и Т 2 ( или соответственно), т.е. в конечном счете определяется номиналами R , L и C . Примеры переходных характеристик RLC -контуров показаны на рис. 42.

Рис. 42

Получим модель динамики механической системы с линейным перемещением, параметрами механических элементов которой являются масса, демпфирование (трение) и упругость (рис. 43). Заметим, что в рассматриваемой системе движение происходит только в одном направлении, перемещение в поперечном направлении не допускается.

Рассмотрим действие внешней силы F (t ) на изолированные механические элементы по отдельности. Для массы М по второму закону Ньютона:

,

где v (t ) – скорость; а (t ) – ускорение, а s (t ) – выходное линейное перемещение (см. рис. 43).

Скорость перемещения поршня демпфера под действием силы F (t ) определяется следующим образом:

,

где G – коэффициент сопротивления (демпфирования).

Рис. 43

Для упругой пружины в соответствии с законом Гука уравнение движения имеет вид:

,

где H – коэффициент упругости пружины.

В системе в целом (см. рис. 43) на тело массы М действуют три силы – внешняя сила F (t ), сила трения и упругая сила, следовательно, для суммы сил справедливо:

Полученное уравнение динамики имеет второй порядок, однако для приведения к форме стандартного дифференциального уравнения колебательного или апериодического звена второго порядка (см. Приложение 1) постоянный коэффициент слагаемого s (t ) в левой части должен быть равен 1. Приведем уравнение динамики к типовому виду, разделив левую и правую часть на коэффициент упругости пружины H :

Полученное уравнение соответствует дифференциальному уравнению, для которого постоянные времени Т 1 = G / H и , т.е. определяются массой, а также величинами G и H ; k = 1 / Н ; y (t ) = s (t ); x (t ) = F (t ).

Т.о., мы показали, что механическая система вида, приведенного на рис. 43, также является колебательным или апериодическим звеном второго порядка. Конкретный тип звена зависит от соотношения постоянных времени Т 1 и Т 2 ( или соответственно), т.е. в конечном счете определяется величинами M , G и H . Рассмотренная механическая система может быть использована, например, в качестве звена модели тормозной системы автомобиля в расчете на одно колесо (кроме рассмотренного звена в такой модели требуется учет массы автомобиля и упругости шины).

Из рассмотренных примеров видно, что, несмотря на различие устройств САУ и их назначения, их математические модели имеют вид одного и того же дифференциального уравнения второго порядка. Рассмотренные типы звеньев в литературе иногда называют инерционными звеньями второго порядка .

Интегрирующие звенья

Идеальным интегрирующим звеном называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины (см. Приложение 1):

,

где k – коэффициент статического преобразования (коэффициент усиления) идеального интегрирующего звена, равный отношению скорости изменения выходной величины к входной.

Передаточная функция звена имеет вид:

.

Переходная характеристика идеального интегрирующего звена имеет вид наклонной прямой, так как интеграл геометрически представляет собой площадь, ограничиваемую графиком ступенчатого входного воздействия x (t ), которая возрастает с течением времени t . Решение дифференциального уравнения идеального интегрирующего звена имеет вид:

,

откуда для единичной ступеньки (x (t ) = 1 при t ³ 0) при нулевых начальных условиях y (0) = 0 получаем линейно возрастающую переходную характеристику y (t ) = k ×t . На рис. 44 показаны переходные характеристики идеальных интегрирующих звеньев с различными значениями k .

Рис. 44

Простейший бытовой пример идеального интегрирующего звена – ванна, в которую набирается вода. Входное воздействие x (t ) для этого объекта это приток (расход) воды через кран, а выходная величина y (t ) – уровень воды в ванне. При поступлении воды уровень растет, т.е. система «накапливает» (интегрирует) входной сигнал.

Примерами идеальных интегрирующих звеньев являются такие устройства САУ, как операционный усилитель, используемый в режиме интегрирования (рис. 45–а ) и гидравлический демпфер (рис. 45–б ).

Уравнение операционного усилителя, используемого в режиме интегрирования, имеет вид:

,

что соответствует уравнению идеального интегрирующего звена, для которого k = 1/R ×C , U вх = x (t ), U вых = y (t ).

Рис. 45
а )
б )

Для гидравлического демпфера входным воздействием является сила F , действующая на поршень, а выходной величиной – перемещение поршня s . Так как скорость движения поршня пропорциональна приложенной силе:

,

где G – коэффициент сопротивления (демпфирования), то перемещение поршня будет пропорционально интегралу от приложенной силы:

.

Полученное уравнение соответствует уравнению идеального интегрирующего звена, для которого k = 1/G , F (t ) = x (t ), s (t ) = y (t ).

Рассмотренная разновидность интегрирующих звеньев называется идеальной , т.к. его уравнение не учитывает инерционность описываемого звеном устройства САУ. В литературе этот тип звена иногда называют астатическим звеном.

Все реальные устройства вносят некоторое замедление в работу, поэтому более точной моделью реальных интегрирующих устройств является интегрирующее звено с замедлением

,

т.е. представляет собой произведение передаточных функций идеального интегрирующего звена и апериодического звена первого порядка. Т.о., интегрирующее звено с замедлением можно представить последовательным соединением этих двух разновидностей типовых звеньев. Таким звеном может быть описан двигатель, если в качестве выходной величины рассматривать не угловую скорость, а угол поворота, являющийся интегралом от угловой скорости, а также демпфер, если более точно рассматривать его уравнение движения .

Дифференцирующие звенья

Идеальное дифференцирующее дает на выходе величину, пропорциональную производной входного сигнала, т.е. скорости изменения входного воздействия (см. Приложение 1):

,

где k – коэффициент статического преобразования (коэффициент усиления) идеального дифференцирующего звена. Передаточная функция звена имеет вид: .

Дифференцирующее звено реагирует не на изменение самой входной величины, а на изменение ее производной, то есть на тенденцию развития событий. Поэтому говорят, что дифференцирующее звено обладает упреждающим, прогнозирующим действием. С его помощью можно ускорить реакцию САУ на изменяющиеся входные воздействия.

Проанализируем форму переходной характеристики идеального дифференцирующего звена (см. Приложение 1). При подаче на вход звена единичной ступеньки x (t ) = 0 для t < 0 и x (t ) = 1 для t > 0. Производная постоянной величины равна нулю, следовательно, y (t ) = 0 для t < 0 и для t > 0. И только в момент непосредственного изменения входного воздействия с нуля на единицу, т.е. в момент времени t = 0, производная входного сигнала dx (t )/dt не равна нулю:

В результате переходная характеристика идеального дифференцирующего звена в момент времени t = 0 теоретически имеет форму импульса с бесконечно большой амплитудой и бесконечно малой длительностью. Понятно, что такую переходную характеристику невозможно получить с использованием реального устройства САУ. Поэтому идеальное дифференцирующие звено, а также звенья этого типа первого и второго порядков (см. Приложение 1) являются модельными и относятся к физически нереализуемым звеньям.

Приближенно в качестве идеального дифференцирующего звена может рассматриваться операционный усилитель, включенный в режиме дифференцирования (рис. 46–а ), и тахогенератор постоянного тока, если в качестве входной величины рассматривать угол поворота его ротора a(t ), а в качестве выходной – напряжение якоря U я (t ) (рис. 46–б ).

В тахогенераторе постоянного тока при неизменном потоке возбуждения напряжение якоря можно считать пропорциональным угловой скорости вращения. В свою очередь скорость вращения есть производная от угла поворота:

,

что соответствует дифференциальному уравнению идеального дифференцирующего звена с коэффициентом статического преобразования k , y (t ) = U я (t ); x (t ) = a(t ).

Практически дифференцирующие устройства САУ вносят некоторое замедление в работу (обладают инерционностью), поэтому более точной моделью реальных устройств является дифференцирующее звено с замедлением , передаточная функция которого имеет вид:

,

т.е. представляет собой произведение передаточных функций идеального дифференцирующего звена и апериодического звена первого порядка. Т.о., дифференцирующее звено с замедлением можно представить последовательным соединением этих двух разновидностей типовых звеньев. Примерами дифференцирующего звена с замедлением могут служить трансформатор, емкостной дифференцирующий контур (рис. 47–а ) и механическое дифференцирующее устройство, состоящее из пружины и демпфера (рис. 47–б ).

Рис. 47
а )
б )

Получим модель динамики емкостного дифференцирующегоконтура (см. рис. 47–а ). Запишем уравнения входной и выходной цепей по закону Кирхгофа:

Продифференцируем уравнение входной цепи:

,

и подставим в него ток i (t ), выразив его из уравнения выходной цепи:

Выведем передаточную функцию емкостного дифференцирующегоконтура:

Полученная W (p k = T = R ×C .

Получим модель динамики механического дифференцирующего устройства (см. рис. 47–б ) для y (t ) = s вых (t ); x (t ) = s вх (t ) в предположении, что элемент трения (демпфер) и упругости (пружина) имеют нулевую массу. Уравнение движение демпфера для данного случая имеет вид:

,

где G – коэффициент сопротивления (демпфирования). Для пружины с коэффициентом упругости H уравнение движения имеет вид:

,

следовательно, после подстановки:

Выведем передаточную функцию механического дифференцирующего устройства:

Полученная W (p ) соответствует передаточной функции дифференцирующего звена с замедлением, у которого k = T = G /H .

Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х( t ) , и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у( t ) . Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

    пропорциональное звено;

    апериодическое звено I-ого порядка;

    апериодическое звено II-ого порядка;

    колебательное звено;

    интегрирующее звено;

    идеальное дифференцирующее звено;

    форсирующее звено I-ого порядка;

    форсирующее звено II-ого порядка;

    звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным .

1. Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W (s ) = K где К – коэффициент усиления.

Пропорциональное звено описывается алгебраическим уравнением:

у(t ) = K · х(t )

Примерами таких пропорциональных звеньев могут служить, рычажный механизм, жесткая механическая передача, редуктор, электронный усилитель сигналов на низких частотах, делитель напряжения и др.



4. Переходная функция .

Переходная функция пропорциональное звена имеет вид:

h(t) = L -1 = L -1 = K · 1(t)

5. Весовая функция.

Весовая функция пропорционального звена равна:

w(t) = L -1 = K ·δ(t)



Рис. 3.5. Переходная функция, весовая функция, АФЧХ и АЧХ пропорционального звена.

6. Частотные характеристики .

Найдем АФЧХ, АЧХ, ФЧХ и ЛАХ пропорционального звена:

W(j ω ) = K = K +0 ·j

A(ω ) =
= K

φ(ω) = arctg(0/K) = 0

L(ω) = 20·lg = 20·lg(K)

Как следует из представленных результатов, амплитуда выходного сигнала не зависит от частоты. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥, как правило на высоких частотах, коэффициент усиления становится меньше и стремиться к нулю при ω → ∞. Таким образом, математическая модель пропорционального звена является некоторой идеализацией реальных звеньев .

Апериодическое звено I -ого порядка

Апериодические звенья иначе еще называются инерционными .

1. Передаточная функция.

Передаточная функция апериодического звена I-ого порядка имеет вид:

W (s ) = K /(T · s + 1)

где K – коэффициент усиления; T – постоянная времени, характеризующая инерционность системы, т.е. продолжительность переходного процесса в ней. Поскольку постоянная времени характеризует некоторый временной интервал , то ее величина должна быть всегда положительной, т.е. (T > 0).

2. Математическое описание звена.

Апериодическое звено I-ого порядка описывается дифференциальным уравнением первого порядка:

T · d у(t )/ dt + у(t ) = K ·х(t )

3. Физическая реализация звена.

Примерами апериодического звена I-ого порядка могут служить: электрический RC-фильтр; термоэлектрический преобразователь; резервуар с сжатым газом и т.п.

4. Переходная функция .

Переходная функция апериодического звена I-ого порядка имеет вид:

h(t) = L -1 = L -1 = K – K·e -t/T = K·(1 – e -t/T )


Рис. 3.6. Переходная характеристика апериодического звена I-го порядка.

Переходный процесс апериодического звена I-ого порядка имеет экспоненциальный вид. Установившееся значение равно: h уст = K. Касательная в точке t = 0 пересекает линию установившегося значения в точке t = T. В момент времени t = T переходная функция принимает значение: h(T) ≈ 0.632·K, т.е. за время T переходная характеристика набирает только около 63% от установившегося значения.

Определим время регулирования T у для апериодического звена I-ого порядка. Как известно из предыдущей лекции, время регулирования – это время, после которого разница между текущим и установившимся значениями не будет превышать некоторой заданной малой величины Δ. (Как правило, Δ задается как 5 % от установившегося значения).

h(T у) = (1 – Δ)·h уст = (1 – Δ)·K = K·(1 – e - T у/ T), отсюда е - T у/ T = Δ, тогда T у /T = -ln(Δ), В итоге получаем T у = [-ln(Δ)]·T.

При Δ = 0,05 T у = - ln(0.05)·T ≈ 3·T.

Другими словами, время переходного процесса апериодического звена I-ого порядка приблизительно в 3 раза превышает постоянную времени.

Вверх